Spike-timing-dependent plasticity of neocortical excitatory Synapses on inhibitory Interneurons depends on target cell type

被引:121
|
作者
Lu, Jiang-teng
Li, Cheng-yu
Zhao, Jian-Ping
Poo, Mu-ming
Zhang, Xiao-hui [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Neurosci, Shanghai 200031, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Biol Sci, Key Lab Neurobiol, Shanghai 200031, Peoples R China
[3] Univ Calif Berkeley, Helen Wills Neurosci Inst, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA
关键词
synaptic plasticity; spike-timing-dependent plasticity; STDP; excitatory synapse; inhibitory interneuron; target-cell specificity; somatosensory cortex;
D O I
10.1523/JNEUROSCI.2513-07.2007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Repetitive correlated spiking can induce long-term potentiation ( LTP) and long-term depression ( LTD) of many excitatory synapses on glutamatergic neurons, in a manner that depends on the timing of presynaptic and postsynaptic spiking. However, it is mostly unknown whether and how such spike-timing-dependent plasticity ( STDP) operates at neocortical excitatory synapses on inhibitory interneurons, which have diverse physiological and morphological characteristics. In this study, we found that these synapses exhibit target-cell-dependent STDP. In layer 2/3 of the somatosensory cortex, the pyramidal cell ( PC) forms divergent synapses on fast spiking ( FS) and low-threshold spiking ( LTS) interneurons that exhibit short-term synaptic depression and facilitation in response to high-frequency stimulation, respectively. At PC-LTS synapses, repetitive correlated spiking induced LTP or LTD, depending on the timing of presynaptic and postsynaptic spiking. However, regardless of the timing and frequency of spiking, correlated activity induced only LTD at PC-FS synapses. This target-cell-specific STDP was not caused by the difference in the short-term plasticity between these two types of synapses. Activation of postsynaptic NMDA subtype of glutamate receptors ( NMDARs) was required for LTP induction at PC-LTS synapses, whereas activation of metabotropic glutamate receptors was required for LTD induction at both PC-LTS and PC-FS synapses. Additional analysis of synaptic currents suggests that LTP and LTD of PC-LTS synapses, but not LTD of PC-FS synapses, involves presynaptic modifications. Such dependence of both the induction and expression of STDP on the type of postsynaptic interneurons may contribute to differential processing and storage of information in cortical local circuits.
引用
收藏
页码:9711 / 9720
页数:10
相关论文
共 50 条
  • [31] Supervised Learning with Complex Spikes and Spike-Timing-Dependent Plasticity
    Houghton, Conor
    PLOS ONE, 2014, 9 (06):
  • [32] A Spike Neural Network Model for Lateral Suppression of Spike-Timing-Dependent Plasticity with Adaptive Threshold
    Zhong, Xueyan
    Pan, Hongbing
    APPLIED SCIENCES-BASEL, 2022, 12 (12):
  • [33] Spike-timing-dependent plasticity in small-world networks
    Kube, Karsten
    Herzog, Andreas
    Michaelis, Bernd
    de Lima, Ana D.
    Voigt, Thomas
    NEUROCOMPUTING, 2008, 71 (7-9) : 1694 - 1704
  • [34] Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity
    Pecevski, Dejan
    Maass, Wolfgang
    ENEURO, 2016, 3 (02) : 8616 - 8620
  • [35] Deep unsupervised learning using spike-timing-dependent plasticity
    Lu, Sen
    Sengupta, Abhronil
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2024, 4 (02):
  • [36] Spike-timing-dependent synaptic plasticity: from single spikes to spike trains
    Panchev, C
    Wermter, S
    NEUROCOMPUTING, 2004, 58 : 365 - 371
  • [37] Spike-timing-dependent plasticity: common themes and divergent vistas
    Adam Kepecs
    Mark C.W. van Rossum
    Sen Song
    Jesper Tegner
    Biological Cybernetics, 2002, 87 : 446 - 458
  • [38] Conditional modulation of spike-timing-dependent plasticity for olfactory learning
    Cassenaer, Stijn
    Laurent, Gilles
    NATURE, 2012, 482 (7383) : 47 - U62
  • [39] Configurable Neural Phase Shifter With Spike-Timing-Dependent Plasticity
    Zhang, Lei
    Lai, Qianxi
    Chen, Yong
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (07) : 716 - 718
  • [40] A Biophysical Basis for the Inter-spike Interaction of Spike-timing-dependent Plasticity
    Neel T. Shah
    Luk Chong Yeung
    Leon N. Cooper
    Yidao Cai
    Harel Z. Shouval
    Biological Cybernetics, 2006, 95 : 113 - 121