The spectral radius of trees on k pendant vertices

被引:144
作者
Wu, BF [1 ]
Xiao, E
Hong, Y
机构
[1] Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
graph; tree; pendant vertex; spectral radius;
D O I
10.1016/j.laa.2004.08.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the following problem: Of all trees of order n with k pendant vertices (n, k fixed), which achieves the maximal spectral radius? We show that the maximal spectral radius is obtained uniquely at T-n,T-k, where T-n,T-k is a tree obtained from a star K-1,K-k and k paths of almost equal lengths by joining each pendant vertex of K-1,K-k to an end vertex of one path. We also discuss the spectral radius of T-n,T-k and get some results. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:343 / 349
页数:7
相关论文
共 8 条
[1]  
[Anonymous], [No title captured]
[2]  
Berman A., 1987, NONNEGATIVE MATRICES
[3]  
CVETKOVIC D, 1997, EIGENSPACES GRAPHS
[4]  
GUO JM, 2001, LINEAR ALGEBRA APPL, V329, P1
[5]  
HOFMEISTER M, 1997, LINEAR ALGEBRA APPL, V260, P46
[6]  
Li Qiao, 1979, Acta Mathematicae Applacatae Sinica, V2, P167
[7]   THE 2ND LARGEST EIGENVALUE OF A TREE [J].
NEUMAIER, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 46 (AUG) :9-25
[8]  
XU GH, 1997, COMBINATORIES GRAPH