Deep biomarkers of human aging: Application of deep neural networks to biomarker development

被引:224
作者
Putin, Evgeny [1 ,2 ]
Mamoshina, Polina [1 ,3 ]
Aliper, Alexander [1 ]
Korzinkin, Mikhail [1 ]
Moskalev, Alexey [1 ,4 ]
Kolosov, Alexey [5 ]
Ostrovskiy, Alexander [5 ]
Cantor, Charles [6 ]
Vijg, Jan [7 ]
Zhavoronkov, Alex [1 ,3 ]
机构
[1] Insilico Med Inc, Pharma AI Dept, Baltimore, MD 21218 USA
[2] ITMO Univ, Comp Technol Lab, St Petersburg 197101, Russia
[3] Biogerontol Res Fdn, Oxford, England
[4] George Mason Univ, Sch Syst Biol, Fairfax, VA 22030 USA
[5] Invitro Lab Ltd, Moscow 125047, Russia
[6] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[7] Albert Einstein Coll Med, Dept Genet, Bronx, NY 10461 USA
来源
AGING-US | 2016年 / 8卷 / 05期
关键词
deep learning; deep neural networks; biomarker development; aging biomarkers; human aging; machine learning; WHITE BLOOD-CELLS; BIOLOGICAL AGE; COUNT; REVEAL; HEALTH;
D O I
10.18632/aging.100968
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
One of the major impediments in human aging research is the absence of a comprehensive and actionable set of biomarkers that may be targeted and measured to track the effectiveness of therapeutic interventions. In this study, we designed a modular ensemble of 21 deep neural networks (DNNs) of varying depth, structure and optimization to predict human chronological age using a basic blood test. To train the DNNs, we used over 60,000 samples from common blood biochemistry and cell count tests from routine health exams performed by a single laboratory and linked to chronological age and sex. The best performing DNN in the ensemble demonstrated 81.5 % epsilon-accuracy r = 0.90 with R-2 = 0.80 and MAE = 6.07 years in predicting chronological age within a 10 year frame, while the entire ensemble achieved 83.5% epsilon-accuracy r = 0.91 with R-2 = 0.82 and MAE = 5.55 years. The ensemble also identified the 5 most important markers for predicting human chronological age: albumin, glucose, alkaline phosphatase, urea and erythrocytes. To allow for public testing and evaluate real-life performance of the predictor, we developed an online system available at http://www.aging.ai. The ensemble approach may facilitate integration of multi-modal data linked to chronological age and sex that may lead to simple, minimally invasive, and affordable methods of tracking integrated biomarkers of aging in humans and performing cross-species feature importance analysis.
引用
收藏
页码:1021 / 1033
页数:13
相关论文
共 36 条
[1]   Signaling pathway activation drift during aging: Hutchinson-Gilford Progeria Syndrome fibroblasts are comparable to normal middle-age and old-age cells [J].
Aliper, Alexander M. ;
Csoka, Antonei Benjamin ;
Buzdin, Anton ;
Jetka, Tomasz ;
Roumiantsev, Sergey ;
Moskalev, Alexey ;
Zhavoronkov, Alex .
AGING-US, 2015, 7 (01) :26-37
[2]   Permutation importance: a corrected feature importance measure [J].
Altmann, Andre ;
Tolosi, Laura ;
Sander, Oliver ;
Lengauer, Thomas .
BIOINFORMATICS, 2010, 26 (10) :1340-1347
[3]  
[Anonymous], FRONTIERS GENETICS
[4]  
[Anonymous], 1995, Advances in Neural Information Processing Systems
[5]  
[Anonymous], 2015, Health in 2015: from MDGs Millennium Development Goals to SDGs Sustainable Development Goals
[6]  
[Anonymous], STAT CHALLENGES ASTR
[7]  
[Anonymous], MOL PHARM INTERNET
[8]   White Blood Cell Counts as Risk Markers of Developing Metabolic Syndrome and Its Components in the Predimed Study [J].
Babio, Nancy ;
Ibarrola-Jurado, Nuria ;
Bullo, Monica ;
Angel Martinez-Gonzalez, Miguel ;
Waernberg, Julia ;
Salaverria, Itziar ;
Ortega-Calvo, Manuel ;
Estruch, Ramon ;
Serra-Majem, Lluis ;
Isabel Covas, Maria ;
Vicente Sorli, Jose ;
Salas-Salvado, Jordi .
PLOS ONE, 2013, 8 (03)
[9]  
Boudjeltia KZ, 2008, VASC HEALTH RISK MAN, V4, P1467
[10]   MARK-AGE biomarkers of ageing [J].
Buerkle, Alexander ;
Moreno-Villanueva, Maria ;
Bernhard, Juergen ;
Blasco, Maria ;
Zondag, Gerben ;
Hoeijmakers, Jan H. J. ;
Toussaint, Olivier ;
Grubeck-Loebenstein, Beatrix ;
Mocchegiani, Eugenio ;
Collino, Sebastiano ;
Gonos, Efstathios S. ;
Sikora, Ewa ;
Gradinaru, Daniela ;
Dolle, Martijn ;
Salmon, Michel ;
Kristensen, Peter ;
Griffiths, Helen R. ;
Libert, Claude ;
Grune, Tilman ;
Breusing, Nicolle ;
Simm, Andreas ;
Franceschi, Claudio ;
Capri, Miriam ;
Talbot, Duncan ;
Caiafa, Paola ;
Friguet, Bertrand ;
Slagboom, P. Eline ;
Hervonen, Antti ;
Hurme, Mikko ;
Aspinall, Richard .
MECHANISMS OF AGEING AND DEVELOPMENT, 2015, 151 :2-12