Resonance tongues in Hill's equations:: A geometric approach

被引:48
作者
Broer, H
Simó, C
机构
[1] Univ Groningen, Dept Math & Comp Sci, NL-9747 AC Groningen, Netherlands
[2] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain
关键词
D O I
10.1006/jdeq.2000.3804
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The geometry of resonance tongues is considered in, mainly reversible, versions of Hill's equation, close to the classical Mathieu case. Hill's map assigns to each value of the multiparameter the corresponding Poincare matrix. Dy an averaging method, the geometry of Hill's map locally can be understood in terms of cuspoid Whitney singularities. This adds robustness to the result. The algorithmic nature of the averaging method enables a pull-back to the resonance tongues of the original system. (C) 2000 Academic Press.
引用
收藏
页码:290 / 327
页数:38
相关论文
共 23 条
  • [1] AFSHARNEJAD Z, 1986, INDIAN J PURE AP MAT, V17, P1284
  • [2] [Anonymous], 1980, MATH METHODS CLASSIC
  • [3] [Anonymous], DYN REPORT
  • [4] Arnold V. I., 1983, GEOMETRICAL METHODS
  • [5] ARNOLD VI, 1983, RUSS MATH SURV+, V38, P215, DOI 10.1070/RM1983v038n04ABEH004210
  • [6] BROCKER T, 1976, DIFFERENTIABLE GERMS
  • [7] GEOMETRICAL ASPECTS OF STABILITY THEORY FOR HILLS EQUATIONS
    BROER, H
    LEVI, M
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 131 (03) : 225 - 240
  • [8] Broer H., 1998, Boletim da Sociedade Brasileira De Matematica, V29, P253
  • [9] The inverted pendulum: A singularity theory approach
    Broer, HW
    Hoveijn, I
    van Noort, M
    Vegter, G
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (01) : 120 - 149
  • [10] A reversible bifurcation analysis of the inverted pendulum
    Broer, HW
    Hoveijn, I
    van Noort, M
    [J]. PHYSICA D, 1998, 112 (1-2): : 50 - 63