Discrete fractional cobweb models

被引:7
作者
Bohner, Martin [1 ]
Jonnalagadda, Jagan Mohan [2 ]
机构
[1] Missouri S&T, Rolla, MO 65409 USA
[2] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad 500078, Telangana, India
关键词
Caputo nabla fractional difference; Cobweb model; Mittag-Leffler-type function; Equilibrium; Stability;
D O I
10.1016/j.chaos.2022.112451
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we propose two types of discrete fractional cobweb models. We derive the analytical solutions of these models and establish sufficient conditions on the stability of their equilibria. We also provide two examples to demonstrate the applicability of our main results.(c) 2022 Published by Elsevier Ltd.
引用
收藏
页数:5
相关论文
共 18 条
[11]  
Goodrich C., 2015, Discrete Fractional Calculus
[12]  
GRAY HL, 1988, MATH COMPUT, V50, P513, DOI 10.1090/S0025-5718-1988-0929549-2
[13]  
Hein J., 2011, Pan American Mathematical Journal, V21, P79
[14]  
Miller Kenneth S, 1988, ELLIS HORWOOD SER MA, P139
[15]  
Mohan Jonnalagadda Jagan, 2022, FRACTIONAL DIFFER CA
[16]   The Z-Transform Method and Delta Type Fractional Difference Operators [J].
Mozyrska, Dorota ;
Wyrwas, Malgorzata .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
[17]   A new fractional dynamic cobweb model based on nonsingular kernel derivatives [J].
Salahshour, Soheil ;
Ahmadian, Ali ;
Allahviranloo, Tofigh .
CHAOS SOLITONS & FRACTALS, 2021, 145
[18]  
Shone R., 2002, Economic Dynamics: Phase Diagrams and Their Economic Application, V2A