Discrete fractional cobweb models

被引:7
作者
Bohner, Martin [1 ]
Jonnalagadda, Jagan Mohan [2 ]
机构
[1] Missouri S&T, Rolla, MO 65409 USA
[2] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad 500078, Telangana, India
关键词
Caputo nabla fractional difference; Cobweb model; Mittag-Leffler-type function; Equilibrium; Stability;
D O I
10.1016/j.chaos.2022.112451
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we propose two types of discrete fractional cobweb models. We derive the analytical solutions of these models and establish sufficient conditions on the stability of their equilibria. We also provide two examples to demonstrate the applicability of our main results.(c) 2022 Published by Elsevier Ltd.
引用
收藏
页数:5
相关论文
共 18 条
[1]  
Abdeljawad T., 2017, Arab Journal of Mathematical Sciences, V23, P157
[2]   Nabla discrete fractional calculus and nabla inequalities [J].
Anastassiou, George A. .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (5-6) :562-571
[3]  
[Anonymous], 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[4]  
Atici FM, 2009, ELECTRON J QUAL THEO
[5]   Dynamic cobweb models with conformable fractional derivatives [J].
Bohner, Martin ;
Hatipoglu, Veysel Fuat .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2019, 32 :157-167
[6]   Cobweb model with conformable fractional derivatives [J].
Bohner, Martin ;
Hatipoglu, Veysel Fuat .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) :9010-9017
[7]   ON EXPLICIT STABILITY CONDITIONS FOR A LINEAR FRACTIONAL DIFFERENCE SYSTEM [J].
Cermak, Jan ;
Gyori, Istvan ;
Nechvatal, Ludek .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) :651-672
[8]   Caputo fractional continuous cobweb models [J].
Chen, Churong ;
Bohner, Martin ;
Jia, Baoguo .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 374
[9]  
Fulford G., 1997, MODELLING DIFFERENTI
[10]  
Gandolfo G., 1980, EC DYNAMICS METHODS