Linear differential operators on bivariate spline spaces and spline vector fields

被引:10
作者
Alfeld, Peter [1 ]
Sorokina, Tatyana [2 ]
机构
[1] Univ Utah, 155 South 1400 East,JWB 233, Salt Lake City, UT 84112 USA
[2] Towson Univ, 7800 York Rd, Towson, MD 21252 USA
关键词
Spline vector field; Divergence; Curl; Harmonic splines; Finite element; Dimension; Cross-cut; Bernstein-Bezier; PIECEWISE POLYNOMIALS;
D O I
10.1007/s10543-015-0557-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the application of standard differentiation operators to spline spaces and spline vector fields defined on triangulations in the plane. In particular, we explore the use of Bernstein-B,zier techniques for answering questions such as: What are the images or the kernels, and their dimensions, of partial derivative, gradient, divergence, curl, or Laplace, operators. We also describe a particular continuous piecewise quadratic finite element whose nodal parameters are function and divergence (or curl) values.
引用
收藏
页码:15 / 32
页数:18
相关论文
共 15 条
[1]  
Alfeld P., 2015, MDS SOFTWARE
[2]  
[Anonymous], 1984, CALCOLO, DOI 10.1007/bf02576171
[3]  
Arnold D., ARXIV13066821
[4]   Geometric decompositions and local bases for spaces of finite element differential forms [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (21-26) :1660-1672
[5]  
BILLERA LJ, 1991, APPROX THEORY APPL, V7, P91
[6]  
Clough R.W., 1965, P C MATR METH STRUCT
[7]  
Lai M., 2007, Spline functions on triangulations, Encyclopedia of Mathematics and its Applications
[8]  
Morgan J., 1990, UHMD78
[9]  
Powell M. J. D., 1977, ACM Transactions on Mathematical Software, V3, P316, DOI 10.1145/355759.355761
[10]  
SCOTT L.R., 1985, Lectures in Appl. Math., V22-2, P221