Global Observations of Open-Ocean Mode-1 M2 Internal Tides

被引:176
|
作者
Zhao, Zhongxiang [1 ]
Alford, Matthew H. [2 ]
Girton, James B. [1 ]
Rainville, Luc [1 ]
Simmons, Harper L. [3 ]
机构
[1] Univ Washington, Appl Phys Lab, 1013 NE 40th St, Seattle, WA 98105 USA
[2] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[3] Univ Alaska Fairbanks, Fairbanks, AK USA
关键词
GENERAL-CIRCULATION; TIDAL DISSIPATION; DEEP-OCEAN; TOPEX/POSEIDON ALTIMETRY; SURFACE MANIFESTATION; BAROCLINIC TIDES; WAVE PROPAGATION; NUMERICAL-MODEL; ENERGY; ENERGETICS;
D O I
10.1175/JPO-D-15-0105.1
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
A global map of open-ocean mode-1 M-2 internal tides is constructed using sea surface height (SSH) measurements from multiple satellite altimeters during 1992-2012, representing a 20-yr coherent internal tide field. A two-dimensional plane wave fit method is employed to 1) suppress mesoscale contamination by extracting internal tides with both spatial and temporal coherence and 2) separately resolve multiple internal tidal waves. Global maps of amplitude, phase, energy, and flux of mode-1 M-2 internal tides are presented. The M-2 internal tides are mainly generated over topographic features, including continental slopes, midocean ridges, and sea-mounts. Internal tidal beams of 100-300 km width are observed to propagate hundreds to thousands of kilometers. Multiwave interference of some degree is widespread because of the M-2 internal tide's numerous generation sites and long-range propagation. The M-2 internal tide propagates across the critical latitudes for parametric subharmonic instability (28.88S/N) with little energy loss, consistent with the 2006 Internal Waves across the Pacific (IWAP) field measurements. In the eastern Pacific Ocean, the M-2 internal tide loses significant energy in propagating across the equator; in contrast, little energy loss is observed in the equatorial zones of the Atlantic, Indian, and western Pacific Oceans. Global integration of the satellite observations yields a total energy of 36 PJ (1 PJ = 10(15) J) for all the coherent mode-1 M-2 internal tides. Finally, satellite observed M-2 internal tides compare favorably with field mooring measurements and a global eddy-resolving numerical model.
引用
收藏
页码:1657 / 1684
页数:28
相关论文
共 38 条
  • [1] New Altimetric Estimates of Mode-1 M2 Internal Tides in the Central North Pacific Ocean
    Zhao, Zhongxiang
    Alford, Matthew H.
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2009, 39 (07) : 1669 - 1684
  • [2] Internal Tides FromSWOT: A75-Day Instantaneous Mode-1 M2 Internal Tide Model
    Zhao, Zhongxiang
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2024, 129 (12)
  • [3] Global Dynamics of the Stationary M2 Mode-1 Internal Tide
    Kelly, Samuel M.
    Waterhouse, Amy F.
    Savage, Anna C.
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (11)
  • [4] On the predictability of mode-1 internal tides
    Dushaw, Brian D.
    Worcester, Peter F.
    Dzieciuch, Matthew A.
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2011, 58 (06) : 677 - 698
  • [5] Satellite Estimates of Mode-1 M2 Internal Tides Using Nonrepeat Altimetry Missions
    Zhao, Zhongxiang
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2022, 52 (12) : 3065 - 3076
  • [6] The Global Mode-1 S2 Internal Tide
    Zhao, Zhongxiang
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2017, 122 (11) : 8794 - 8812
  • [7] Development of the Yearly Mode-1 M2 Internal Tide Model in 2019
    Zhao, Zhongxiang
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2022, 39 (04) : 463 - 478
  • [8] The Global Mode-2 M2 Internal Tide
    Zhao, Zhongxiang
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2018, 123 (11) : 7725 - 7746
  • [9] On the Resonance and Shelf/Open-Ocean Coupling of the Global Diurnal Tides
    Skiba, Aaron W.
    Zeng, Libo
    Arbic, Brian K.
    Mueller, Malte
    Godwin, William J.
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2013, 43 (07) : 1301 - 1324
  • [10] Indirect evidence for substantial damping of low-mode internal tides in the open ocean
    Ansong, Joseph K.
    Arbic, Brian K.
    Buijsman, Maarten C.
    Richman, James G.
    Shriver, Jay F.
    Wallcraft, Alan J.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2015, 120 (09) : 6057 - 6071