Multi-layer nanoarrays sandwiched by anodized aluminium oxide membranes: an approach to an inexpensive, reproducible, highly sensitive SERS substrate

被引:21
作者
Zhao, Chengchun [1 ]
Zhu, Yuan [1 ,2 ]
Chen, Li [2 ]
Zhou, Shaoxin [1 ]
Su, Yuquan [3 ]
Ji, Xu [3 ]
Chen, Anqi [1 ]
Gui, Xuchun [3 ]
Tang, Zikang [4 ]
Liu, Zhaowei [3 ]
机构
[1] Southern Univ Sci & technol, Coll Innovat & Entrepreneurship, Shenzhen 518055, Peoples R China
[2] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[3] Sun Yat Sen Univ, Sch Elect & Informat Technol, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[4] Univ Macau, Inst Appl Phys & Mat Engn, Ave Univ, Taipa, Macau, Peoples R China
基金
美国国家科学基金会;
关键词
ENHANCED RAMAN-SCATTERING; NANOPARTICLE ARRAYS; WAFER-SCALE; NM; NANOSTRUCTURES; LITHOGRAPHY; NANODOTS; WELL; GAPS; AG;
D O I
10.1039/c8nr05875j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A large-scale sub-5 nm nanofabrication technique is developed based on double layer anodized aluminium oxide (AAO) porous membrane masking. This technique also provides a facile route to form multilayer nano-arrays (metal nanoarrays sandwiched by AAO membranes), which is very challenging for other techniques. Normally the AAO mask has to be sacrificed, yet in this work it is preserved as a part of the nanostructure. The preserved AAO layers as the support for the second/third layer of the metal arrays provide a high-refractive index background for the multilayer metal arrays. This background concentrates the local E-field more significantly and results in a much higher Surface-Enhanced Raman Spectroscopy (SERS) signal than single layer metal arrays. This technique may lead to the advent of an inexpensive, reproducible, highly sensitive SERS substrate. Moreover, the physical essence of the plasmonic enhancement is unveiled by finite element method based numerical simulations. Enhancements from the gaps and the multilayer nanostructure agree very well with the experiments. The calculated layer-by-layer electric field distribution determines the contribution from different layers and provides more insights into the 3D textured structure.
引用
收藏
页码:16278 / 16283
页数:6
相关论文
共 33 条
[1]   Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography [J].
Abbas, Ahmad N. ;
Liu, Gang ;
Liu, Bilu ;
Zhang, Luyao ;
Liu, He ;
Ohlberg, Douglas ;
Wu, Wei ;
Zhou, Chongwu .
ACS NANO, 2014, 8 (02) :1538-1546
[2]   Facile Transferring of Wafer-Scale Ultrathin Alumina Membranes onto Substrates for Nanostructure Patterning [J].
Al-Haddad, Ahmed ;
Zhan, Zhibing ;
Wang, Chengliang ;
Tarish, Samar ;
Vellacheria, Ranjith ;
Lei, Yong .
ACS NANO, 2015, 9 (08) :8584-8591
[3]   Optical constants of Cu, Ag, and Au revisited [J].
Babar, Shaista ;
Weaver, J. H. .
APPLIED OPTICS, 2015, 54 (03) :477-481
[4]   Novel Nanostructures and Materials for Strong Light Matter Interactions [J].
Baranov, Denis G. ;
Wersall, Martin ;
Cuadra, Jorge ;
Antosiewicz, Tomasz J. ;
Shegai, Timur .
ACS PHOTONICS, 2018, 5 (01) :24-42
[5]   Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves [J].
Chen, Xiaoshu ;
Park, Hyeong-Ryeol ;
Pelton, Matthew ;
Piao, Xianji ;
Lindquist, Nathan C. ;
Im, Hyungsoon ;
Kim, Yun Jung ;
Ahn, Jae Sung ;
Ahn, Kwang Jun ;
Park, Namkyoo ;
Kim, Dai-Sik ;
Oh, Sang-Hyun .
NATURE COMMUNICATIONS, 2013, 4
[6]   Direct and Reliable Patterning of Plasmonic Nanostructures with Sub-10-nm Gaps [J].
Duan, Huigao ;
Hu, Hailong ;
Kumar, Karthik ;
Shen, Zexiang ;
Yang, Joel K. W. .
ACS NANO, 2011, 5 (09) :7593-7600
[7]   Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays [J].
Grand, J ;
de la Chapelle, ML ;
Bijeon, JL ;
Adam, PM ;
Vial, A ;
Royer, P .
PHYSICAL REVIEW B, 2005, 72 (03)
[8]   Rectangular Silver Nanorods: Controlled Preparation, Liquid-Liquid Interface Assembly, and Application in Surface-Enhanced Raman Scattering [J].
Guo, Shacjun ;
Dong, Shaojun ;
Wang, Erkang .
CRYSTAL GROWTH & DESIGN, 2009, 9 (01) :372-377
[9]   Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates [J].
Hasna, Kudilatt ;
Antony, Aldrin ;
Puigdollers, Joaquim ;
Kumar, Kumaran Rajeev ;
Jayaraj, Madambi Kunjukuttan .
NANO RESEARCH, 2016, 9 (10) :3075-3083
[10]   Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching [J].
Huang, Zhipeng ;
Zhang, Xuanxiong ;
Reiche, Manfred ;
Liu, Lifeng ;
Lee, Woo ;
Shimizu, Tomohiro ;
Senz, Stephan ;
Goesele, Ulrich .
NANO LETTERS, 2008, 8 (09) :3046-3051