Optimal parameter extraction of proton exchange membrane fuel cell using Henry gas solubility optimization

被引:8
作者
Singh, Parminder [1 ]
Sandhu, Amanpreet [2 ]
机构
[1] Thapar Inst Engn & Technol, Chem Engn Dept, Patiala, Punjab, India
[2] Chitkara Univ, Inst Engn & Technol, Patiala, Punjab, India
关键词
BCS-500 W FC stack; Henry's gas solubility optimization (HGSO); Kruskal Wallis ANNOVA; NedSstack PS-6 PEMFC stack; proton exchange membrane fuel cell (PEMFC); SR-12 modular PEMFC stack; Wilcoxon rank sum test; MULTIOBJECTIVE OPTIMIZATION; FORECAST ENGINE; PEMFC MODEL; ALGORITHM; IDENTIFICATION;
D O I
10.1002/er.8437
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The proton exchange membrane fuel cell (PEMFC) transforms chemical energy directly into electricity without polluting the environment or creating noise. The solid electrolyte, excellent reliability, speedy start-up, and lightweight portability distinguish PEMFC. It is difficult to predict various parameters of PEMFC optimally. Numerous metaheuristic models have been established, yet significant inaccuracy arises due to a lack of accurate estimation. So, this present study uses a new optimization approach called Henry's gas solubility optimization (HGSO) to optimally estimate the parameters in the PEMFC model faster and more accurately. To create a balance between exploiting and inquiry in the search area and avoid local minima, the HGSO algorithm resembles gas behavior. The algorithm's performance is assessed using ten benchmark functions, and the results are compared to five other well-known methods. Furthermore, three alternative PEMFC models are used for validation: the SR-12 modular PEMFC stack, the BCS-500 W FC stack, and the NedSstack PS-6 PEMFC stack. The results are compared to actual data. HGSO was able to provide high-quality solutions, faster convergence, shorter processing time, and less errors when compared to other algorithms studied.
引用
收藏
页码:18212 / 18224
页数:13
相关论文
共 33 条
[1]   Multi-objective energy management in a micro-grid [J].
Aghajani, Gholamreza ;
Ghadimi, Noradin .
ENERGY REPORTS, 2018, 4 :218-225
[2]   Effective parameters' identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer [J].
Ali, M. ;
El-Hameed, M. A. ;
Farahat, M. A. .
RENEWABLE ENERGY, 2017, 111 :455-462
[3]  
AMPHLETT JC, 1995, J ELECTROCHEM SOC, V142, P1, DOI 10.1149/1.2043866
[4]   A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (08) :5047-5053
[5]  
Brammya G., 2019, Comput J, P133, DOI [10.1093/COMJNL/BXY133, DOI 10.1093/COMJNL/BXY133, 10.1093/comjnl/bxy133]
[6]   Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm [J].
Cao, Yan ;
Li, Yiqing ;
Zhang, Geng ;
Jermsittiparsert, Kittisak ;
Razmjooy, Navid .
ENERGY REPORTS, 2019, 5 :1616-1625
[7]   Multi-objective optimization of a PEMFC based CCHP system by meta-heuristics [J].
Cao, Yan ;
Wu, Yujia ;
Fu, Leijie ;
Jermsittiparsert, Kittisak ;
Razmjooy, Navid .
ENERGY REPORTS, 2019, 5 :1551-1559
[8]   Parameter fitting of PEMFC models based on adaptive differential evolution [J].
Cheng, Jixiang ;
Zhang, Gexiang .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 62 :189-198
[9]   An electrochemical-based fuel-cell model suitable for electrical engineering automation approach [J].
Corrêa, JM ;
Farret, FA ;
Canha, LN ;
Simoes, MG .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2004, 51 (05) :1103-1112
[10]   Ant colony optimization -: Artificial ants as a computational intelligence technique [J].
Dorigo, Marco ;
Birattari, Mauro ;
Stuetzle, Thomas .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2006, 1 (04) :28-39