Synthesis, structure, luminescence, and theoretical studies of tetranuclear gold clusters with phosphinocarborane ligands

被引:46
作者
Calhorda, MJ
Crespo, O
Gimeno, MC
Jones, PG
Laguna, A [1 ]
López-de-Luzuriaga, JM
Perez, JL
Ramón, MA
Veiros, LF
机构
[1] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, Dept Quim Inorgan, E-50009 Zaragoza, Spain
[2] EAN, Quinta Marques, ITQB, P-2781901 Oeiras, Portugal
[3] Univ Lisbon, Fac Ciencias, Dept Quim & Bioquim, P-1749016 Lisbon, Portugal
[4] Univ Huesca, Escuela Politecn, E-22071 Huesca, Spain
[5] Tech Univ Carolo Wilhelmina Braunschweig, Inst Anorgan & Analyt Chem, D-38023 Braunschweig, Germany
[6] Univ La Rioja, Dept Quim, E-26001 Logrono, Spain
[7] Inst Super Tecn, Ctr Quim Estrutural, P-1096 Lisbon, Portugal
关键词
D O I
10.1021/ic000136y
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Treatment of the tetranuclear gold cluster [Au-4{(PPh2)(2)C2B9H10}(2)(ASPh(3))(2)] (1), which contains the nido-carborane-diphosphine [7,8-(PPh2)(2)C2B9H10](-), with various tertiary phosphines leads to derivatives [Au-4{(PPh2)(2)C2B9H10}(2)(PR3)(2)] (PR3 = PPh3 (2), P(4-MeC6H4)(3) (3), P(4-OMeC6H4)(3) (4)) The X-ray crystal structure of complex 4 shows a tetrahedral framework of gold atoms, two of which are chelated by the diphosphine, and two are coordinated to one monophosphine ligand each. These compounds are very stable and are obtained in high yield. MP2 calculations suggest that the two types of chemically nonequivalent gold atoms can be formally assigned as Au(I) (those attached to the arsines or phosphines) and Au(0) (those bonded to the anionic diphosphine) and emphasize the role of correlation in the gold-gold interactions. The compounds are luminescent. The emission is assigned to a gold-centered spin-forbidden transition; the assignment of the oxidation state of the gold centers on this basis leads to results coincident with those obtained by theoretical calculations.
引用
收藏
页码:4280 / 4285
页数:6
相关论文
共 50 条