A 65 nm Programmable ANalog Device Array (PANDA) for Analog Circuit Emulation

被引:14
作者
Suda, Naveen [1 ]
Suh, Jounghyuk [2 ]
Hakim, Nagib [3 ]
Cao, Yu [1 ]
Bakkaloglu, Bertan [1 ]
机构
[1] Arizona State Univ, Sch Elect & Comp Engn, Tempe, AZ 85281 USA
[2] NXP Semicond, Tempe, AZ 85284 USA
[3] Intel Architecture Grp, Santa Clara, CA 95054 USA
基金
美国国家科学基金会;
关键词
Amplifiers; analog processing circuits; design automation; design methodology; field programmable analog arrays; field programmable gate arrays; filters; reconfigurable architectures; HARDWARE; FPAA;
D O I
10.1109/TCSI.2015.2512718
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reconfigurable analog/mixed signal (AMS) platforms in scaled CMOS technology nodes are gaining importance due to the increased design cost, effort and shrinking time-tomarket. Similar to field programmable gate arrays (FPGA) for digital designs, a Programmable ANalog Device Array (PANDA) provides a flexible and versatile solution with transistor-level granularity and reconfiguration capability for rapid prototyping and validation of analog circuits. This paper presents design and synthesis methodology of a PANDA design on 65 nm CMOS technology, consisting of a 24 x 25 cell array, reconfigurable interconnect, configuration memory and serial programming interface. To implement AMS circuits on the PANDA platform, this paper further proposes a CAD tool for technology mapping, placement, routing and configuration bit-stream generation. Several representative building blocks of AMS circuits, such as amplifiers, voltage and current references, filters, are successfully implemented on the PANDA platform. Dynamic reconfiguration capability of PANDA is demonstrated through input offset cancellation of an operational amplifier using an FPGA in a closed loop. Initial measurement results of PANDA implemented circuits demonstrate the potential of the methodology for rapid prototyping and hardware validation of analog circuits.
引用
收藏
页码:181 / 190
页数:10
相关论文
共 35 条
[1]  
[Anonymous], P ACM PHYS DES WORKS
[2]   Field programmable analog arrays for conditioning ultrasonic sensors [J].
Baccigalupi, Aldo ;
Liccardo, Annalisa .
IEEE SENSORS JOURNAL, 2007, 7 (7-8) :1176-1182
[3]   Neural Dynamics in Reconfigurable Silicon [J].
Basu, Arindam ;
Ramakrishnan, Shubha ;
Petre, Csaba ;
Koziol, Scott ;
Brink, Stephen ;
Hasler, Paul E. .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2010, 4 (05) :311-319
[4]   A Floating-Gate-Based Field-Programmable Analog Array [J].
Basu, Arindam ;
Brink, Stephen ;
Schlottmann, Craig ;
Ramakrishnan, Shubha ;
Petre, Csaba ;
Koziol, Scott ;
Baskaya, Faik ;
Twigg, Christopher M. ;
Hasler, Paul .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (09) :1781-1794
[5]   RASP 2.8: A New Generation of Floating-gate based Field Programmable Analog Array [J].
Basu, Arindam ;
Twigg, Christopher M. ;
Brink, Stephen ;
Hasler, Paul ;
Petre, Csaba ;
Ramakrishnan, Shubha ;
Koziol, Scott ;
Schlottmann, Craig .
PROCEEDINGS OF THE IEEE 2008 CUSTOM INTEGRATED CIRCUITS CONFERENCE, 2008, :213-+
[6]  
Becker J., 2008, P 2008 IEEE INT SOL, P70
[7]  
Betz V., 1999, FPGA'99. AGM/SIGDA International Symposium on Field Programmable Gate Arrays, P59, DOI 10.1145/296399.296428
[8]  
Betz V., 1997, Field-programmable Logic and Applications. 7th International Workshop, FPL '97. Proceedings, P213
[9]   Flexible implementation of front-end bioelectric signal amplifier using FPAA for telemedicine system [J].
Chan, U. Fai ;
Chan, Wai Wong ;
Pun, Sio Hang ;
Vai, Mang I. ;
Mak, Peng Un .
2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, :3721-3724
[10]  
Chang Yao-Wen., 1996, ACM Trans. Design Autom. Electron. Syst.