Influence of hydrogen on grid investments for smart microgrids

被引:11
作者
Bartels, Emiel Aurelius [1 ]
Pippia, Tomas [1 ]
De Schutter, Bart [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, Mekelweg 2, Delft, Netherlands
关键词
Demand response; Electric vehicles; Hydrogen; Microgrid; Model predictive control; MODEL-PREDICTIVE CONTROL; DEMAND RESPONSE; ENERGY MANAGEMENT; ELECTRIC VEHICLES; FUEL-CELL; PHOTOVOLTAIC POWER; ECONOMIC-DISPATCH; SYSTEMS; OPTIMIZATION; TECHNOLOGY;
D O I
10.1016/j.ijepes.2022.107968
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrification of the heat network in buildings together with a rise in popularity of Electric Vehicles (EVs) will result in a need to make investments in the electrical energy infrastructure in order to prevent congestion. This paper discusses the influence of hydrogen in future smart microgrids on these investments. Moreover, smart control strategies, i.e., EV management and demand response programs are used in this paper to lower the peak of electrical energy demand resulting in the reduction of these investments. Performances of microgrid with different levels of hydrogen penetration are discussed. It is shown that an increase in the level of hydrogen in the microgrid will reduce the electric grid investments costs but is not economically more beneficial than using 'green' gas due to the higher total economic costs.
引用
收藏
页数:12
相关论文
共 62 条
[11]  
Box G. E. P., 1970, Time series analysis, forecasting and control
[12]   Model predictive control techniques for hybrid systems [J].
Camacho, E. F. ;
Ramirez, D. R. ;
Limon, D. ;
Munoz de la Pena, D. ;
Alamo, T. .
ANNUAL REVIEWS IN CONTROL, 2010, 34 (01) :21-31
[13]  
Carli R, 2020, IEEE INT CON AUTO SC, P152, DOI [10.1109/CASE48305.2020.9216875, 10.1109/case48305.2020.9216875]
[14]   Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samso [J].
Carli, Raffaele ;
Dotoli, Mariagrazia ;
Jantzen, Jan ;
Kristensen, Michael ;
Ben Othman, Sarah .
ENERGY, 2020, 198
[15]   Forecasting of photovoltaic power generation and model optimization: A review [J].
Das, Utpal Kumar ;
Tey, Kok Soon ;
Seyedmahmoudian, Mehdi ;
Mekhilef, Saad ;
Idris, Moh Yamani Idna ;
Van Deventer, Willem ;
Horan, Bend ;
Stojcevski, Alex .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 81 :912-928
[16]   Combined environmental and economic dispatch of smart grids using distributed model predictive control [J].
del Real, Alejandro J. ;
Arce, Alicia ;
Bordons, Carlos .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 54 :65-76
[17]  
ElaadNL, 2020, OP DAT
[18]   Short-term peer-to-peer solar forecasting in a network of photovoltaic systems [J].
Elsinga, Boudewijn ;
van Sark, Wilfried G. J. H. M. .
APPLIED ENERGY, 2017, 206 :1464-1483
[19]   A Hydrogen-Based Integrated Energy and Transport System [J].
Farahani, Samira S. ;
van der Veen, Reinier ;
Oldenbroek, Vincent ;
Alavi, Farid ;
Lee, Esther H. Park ;
van de Wouw, Nathan ;
van Wijk, Ad ;
De Schutter, Bart ;
Lukszo, Zofia .
IEEE SYSTEMS MAN AND CYBERNETICS MAGAZINE, 2019, 5 (01) :37-50
[20]   Stochastic linear Model Predictive Control with chance constraints - A review [J].
Farina, Marcello ;
Giulioni, Luca ;
Scattolini, Riccardo .
JOURNAL OF PROCESS CONTROL, 2016, 44 :53-67