Influence of hydrogen on grid investments for smart microgrids

被引:11
作者
Bartels, Emiel Aurelius [1 ]
Pippia, Tomas [1 ]
De Schutter, Bart [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, Mekelweg 2, Delft, Netherlands
关键词
Demand response; Electric vehicles; Hydrogen; Microgrid; Model predictive control; MODEL-PREDICTIVE CONTROL; DEMAND RESPONSE; ENERGY MANAGEMENT; ELECTRIC VEHICLES; FUEL-CELL; PHOTOVOLTAIC POWER; ECONOMIC-DISPATCH; SYSTEMS; OPTIMIZATION; TECHNOLOGY;
D O I
10.1016/j.ijepes.2022.107968
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrification of the heat network in buildings together with a rise in popularity of Electric Vehicles (EVs) will result in a need to make investments in the electrical energy infrastructure in order to prevent congestion. This paper discusses the influence of hydrogen in future smart microgrids on these investments. Moreover, smart control strategies, i.e., EV management and demand response programs are used in this paper to lower the peak of electrical energy demand resulting in the reduction of these investments. Performances of microgrid with different levels of hydrogen penetration are discussed. It is shown that an increase in the level of hydrogen in the microgrid will reduce the electric grid investments costs but is not economically more beneficial than using 'green' gas due to the higher total economic costs.
引用
收藏
页数:12
相关论文
共 62 条
[1]   Weather forecasts for microgrid energy management: Review, discussion and recommendations [J].
Aguera-Perez, Agustin ;
Carlos Palomares-Salas, Jose ;
Jose Gonzalez de la Rosa, Juan ;
Florencias-Oliveros, Olivia .
APPLIED ENERGY, 2018, 228 :265-278
[2]   Fuel cell cars in a microgrid for synergies between hydrogen and electricity networks [J].
Alavi, Farid ;
Lee, Esther Park ;
van de Wouw, Nathan ;
De Schutter, Bart ;
Lukszo, Zofia .
APPLIED ENERGY, 2017, 192 :296-304
[3]  
AlleCijfers.nl, 2020, INF GEM AMST
[4]   Review of photovoltaic power forecasting [J].
Antonanzas, J. ;
Osorio, N. ;
Escobar, R. ;
Urraca, R. ;
Martinez-de-Pison, F. J. ;
Antonanzas-Torres, F. .
SOLAR ENERGY, 2016, 136 :78-111
[5]   Online short-term solar power forecasting [J].
Bacher, Peder ;
Madsen, Henrik ;
Nielsen, Henrik Aalborg .
SOLAR ENERGY, 2009, 83 (10) :1772-1783
[6]  
Bartolucci L, 2019, ENERGY, V172, P997, DOI 10.1016/j.energy.2019.01.104
[7]   Control of systems integrating logic, dynamics, and constraints [J].
Bemporad, A ;
Morari, M .
AUTOMATICA, 1999, 35 (03) :407-427
[8]  
Berenschot Kalavasta, 2020, CLIM NEUTR EN 2050
[9]   Modelling and control of multi-energy systems through Multi-Prosumer Node and Economic Model Predictive Control [J].
Blaud, Pierre Clement ;
Haurant, Pierrick ;
Claveau, Fabien ;
Lacarriere, Bruno ;
Chevrel, Philippe ;
Mouraud, Anthony .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 118
[10]   Model Predictive Control for optimizing the flexibility of sustainable energy assets: An experimental case study* [J].
Bolzoni, Alberto ;
Parisio, Alessandra ;
Todd, Rebecca ;
Forsyth, Andrew .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 129