Flexible nanoporous activated carbon cloth for achieving high H2, CH4, and CO2 storage capacities and selective CO2/CH4 separation

被引:111
|
作者
Attia, Nour F. [1 ,2 ]
Jung, Minji [1 ]
Park, Jaewoo [1 ]
Jang, Haenam [1 ]
Lee, Kiyoung [3 ]
Oh, Hyunchul [1 ,4 ]
机构
[1] Gyeongnam Natl Univ Sci & Technol GNTECH, Dept Energy Engn, Jinju 52725, South Korea
[2] Natl Inst Stand, Chem Div, Fire Protect Lab, Giza 12211, Egypt
[3] Kyungpook Natl Univ, Sch Nano & Mat Sci & Engn, Sangju 37224, Gyeongbuk, South Korea
[4] Future Convergence Technol Res Inst, Jinju 52725, South Korea
基金
新加坡国家研究基金会;
关键词
Activated carbon materials; Flexible nanoporous carbon cloth; H-2 and CH4 storage; Greenhouse gas; CO2/CH4; selectivity; METAL-ORGANIC FRAMEWORKS; HIGH-SURFACE-AREA; HYDROGEN-STORAGE; METHANE STORAGE; POROUS CARBONS; PORE STRUCTURE; VISCOUS RAYON; ADSORPTION; GAS; CAPTURE;
D O I
10.1016/j.cej.2019.122367
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Innovative tools are needed for the synthesis of smart, new, efficient, and safe nanoporous carbon materials for energy gas storage. Here, a flexible nanoporous activated carbon cloth was developed. Polypyrrole nanoparticles were polymerized in dispersed form on commercial viscose rayon cloth fiber surfaces. Then, the material was carbonized and activated by physical and chemical activation methods applied individually. Chemical activation conditions were varied and optimized. This produced a high porosity flexible nanoporous carbon textile with a surface area of similar to 2000 m(2) g(-1), total pore volume of 0.85 cm(3) g(-1), and high nitrogen content. The new flexible nanoporous carbon cloth achieved superior H-2 and CH4 storage capacities and CO2 capture compared to so-farreported activated carbon cloth, and values were comparable to or higher than those reported for powder activated carbons. Excess H-2 uptake values were 4.0 and 0.173 wt% at 77 K and 298 K at 20 bar, respectively, and CH4 storage amounted to 7.5 mmol g(-1) at 20 bar and 298 K, which is among the highest reported values for porous carbon materials. CO2 uptake values were 4.2 and 14.3 mmol g(-1) at 1 and 20 bar at 298 K, respectively, which are values superior to those previously reported for activated carbon cloth. Hence, the flexible nanoporous activated carbon cloth is effective for greenhouse gas (i.e., CO2) uptake during post- and pre-combustion conditions. Separation selectivity for CO2/CH4 binary mixtures was evaluated based on the ideal adsorbed solution theory (IAST) model and a high value of 15.9 was achieved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A facile synthesis tool of nanoporous carbon for promising H2, CO2, and CH4 sorption capacity and selective gas separation
    Park, Jaewoo
    Jung, Minji
    Jang, Haenam
    Lee, Kiyoung
    Attia, Nour F.
    Oh, Hyunchul
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (45) : 23087 - 23100
  • [22] Solubility of CO2 and CH4 in Ionic Liquids: Ideal CO2/CH4 Selectivity
    Ramdin, Mahinder
    Amplianitis, Aris
    Bazhenov, Stepan
    Volkov, Alexey
    Volkov, Vladimir
    Vlugt, Thijs J. H.
    de Loos, Theo W.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (40) : 15427 - 15435
  • [23] Measurement and Calculation of CO2 Frost Points in CH4 + CO2/CH4 + CO2 + N2/CH4 + CO2 + C2H6 Mixtures at Low Temperatures
    Xiong, Xiaojun
    Lin, Wensheng
    Jia, Rong
    Song, Yang
    Gu, Anzhong
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2015, 60 (11): : 3077 - 3086
  • [24] CO2, H2, AND CH4 PRODUCTION IN RICE RHIZOSPHERE
    KIMURA, M
    MURAKAMI, H
    WADA, H
    SOIL SCIENCE AND PLANT NUTRITION, 1991, 37 (01) : 55 - 60
  • [25] CH4 and CO2 conversion
    Hu, Yun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [26] ATMOSPHERIC CH4, CO, AND CO2
    WOFSY, SC
    MCCONNELL, JC
    MCELROY, MB
    JOURNAL OF GEOPHYSICAL RESEARCH, 1972, 77 (24): : 4477 - +
  • [27] ATMOSPHERIC CH4, CO AND CO2
    WOFSY, SC
    MCELROY, MB
    MCCONNEL.JC
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1972, 53 (07): : 722 - &
  • [28] CO2 reforming of CH4
    Bradford, MCJ
    Vannice, MA
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (01): : 1 - 42
  • [29] Separation of CO2 and CH4 by a DDR membrane
    Johan van den Bergh
    Weidong Zhu
    Freek Kapteijn
    Jacob A. Moulijn
    Kenji Yajima
    Kunio Nakayama
    Toshihiro Tomita
    Shuichi Yoshida
    Research on Chemical Intermediates, 2008, 34 : 467 - 474
  • [30] Development of carbon membrane for CO2/N2 and CO2/CH4 separation
    Alomair, Abdulaziz A.
    CURRENT SCIENCE, 2022, 122 (04): : 405 - 409