Robust Stability Analysis in the Presence of Time-Varying Uncertainties and Time Delay

被引:0
作者
Pana, Valentin [1 ]
Stoica, Adrian-Mihail [1 ]
机构
[1] Univ Politehn Bucuresti, Fac Aerosp Engn, Bucharest, Romania
来源
OPTIROB 2013: OPTIMIZATION OF THE INTELLIGENT SYSTEMS AND THEIR APPLICATIONS IN AEROSPACE, ROBOTICS, MECHANICAL ENGINEERING, MANUFACTURING SYSTEMS, BIOMECHATRONICS AND NEUROREHABILITATION | 2014年 / 332卷
关键词
modeling uncertainties; time delay; small gain theorem; pilot induced oscillations;
D O I
10.4028/www.scientific.net/AMM.332.86
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The paper presents some robust stability conditions for systems affected by parametric uncertainties and time delay. The objective is to obtain a method allowing determining the admissible domain of the parametric uncertainties and the maximum value of the time delay that can be reached without destabilizing the system. The bounds of the parametric uncertain are obtained using the Small Gain Theorem. The norm-boundedness is studied using a version of the Bounded Real Lemma for time-delayed systems. Throughout the paper the theoretical developments are illustrated using a numerical example concerning the prediction of pilot induced oscillations (PIO).
引用
收藏
页码:86 / 91
页数:6
相关论文
共 13 条
[1]   Category II pilot in-the-loop oscillations analysis from robust stability methods [J].
Amato, F ;
Iervolino, R ;
Scala, S ;
Verde, L .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2001, 24 (03) :531-538
[2]  
Amato F., 1999, P 7 MED C CONTR AUT, P1804
[3]  
Barmish B. R., 1983, IEEE T AUTOMATIC CON, V28
[4]  
Bartlett A. C., 1988, Math. Control Sig., V1, P61, DOI DOI 10.1007/BF02551236
[5]  
Desoer CA, 2009, FEEDBACK SYSTEMS INP
[6]   An improved stabilization method for linear time-delay systems [J].
Fridman, E ;
Shaked, U .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (11) :1931-1937
[7]  
MATRANGA GJ, 1961, D1057 NASA TN
[8]  
McRuer D.T, 1996, 963433 AIAA, P581
[9]  
Pana V., 2011, INCAS B, V3
[10]   SYSTEMS WITH STRUCTURED UNCERTAINTY - RELATIONS BETWEEN QUADRATIC AND ROBUST STABILITY [J].
ROTEA, MA ;
CORLESS, M ;
DA, D ;
PETERSEN, IR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (05) :799-803