Conservative cross diffusions and pattern formation through relaxation

被引:30
作者
Bendahmane, Mostafa [1 ]
Lepoutre, Thomas [2 ,4 ]
Marrocco, America [2 ]
Perthame, Benoit [2 ,3 ,4 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Fac Ciencias Fis & Matemat, Concepcion, Chile
[2] INRIA Paris Rocquencourt, Team BANG, F-78153 Le Chesnay, France
[3] Inst Univ France, Paris, France
[4] Univ Paris 06, UMR 7598, LJLL, BC 187, F-75252 Paris 5, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2009年 / 92卷 / 06期
关键词
Cross-diffusions; Duality method; Turing instability; Patch formation; GLOBAL EXISTENCE; COMPETITIVE INTERACTION; SPATIAL SEGREGATION; PARABOLIC-SYSTEMS; SELF-DIFFUSION; DYNAMIC THEORY; EQUATIONS; MODEL; PATCHINESS;
D O I
10.1016/j.matpur.2009.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is aimed at studying the formation of patches in a cross-diffusion system without reaction terms when the diffusion matrix can be negative but with positive self-diffusion. We prove existence results for small data and global a priori bounds in space-time Lebesgue spaces for a large class of 'diffusion' matrices. This result indicates that blow-up should occur on the gradient. One can tackle this issue using a relaxation system with global solutions and prove uniform a priori estimates. Our proofs are based on a duality argument a la M. Pierre which we extend to treat degeneracy and growth of the diffusion matrix. We also analyze the linearized instability of the relaxation system and a Turing type mechanism can occur. This gives the range of parameters and data for which instability may occur. Numerical simulations show that patterns arise indeed in this range and the solutions tend to exhibit patches with stiff gradients on bounded solutions, in accordance with the theory. (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:651 / 667
页数:17
相关论文
共 35 条
[1]   CORRECTION [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1990, 205 (02) :331-331
[3]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[4]  
Amann H., 1990, DIFFERENTIAL INTEGRA, V3, P13
[5]   A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion [J].
Anguige, K. ;
Schmeiser, C. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (03) :395-427
[6]  
[Anonymous], 1994, DIFF EQUAT+
[7]  
[Anonymous], 1980, DIFFUSION ECOLOGICAL
[8]  
[Anonymous], 1994, DIFF EQUAT+
[9]   Global existence for coupled reaction-diffusion systems [J].
Boudiba, N ;
Pierre, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (01) :1-12
[10]   Analysis of a parabolic cross-diffusion population model without self-diffusion [J].
Chen, L ;
Jüngel, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 224 (01) :39-59