Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L.

被引:312
作者
Nabikhan, Asmathunisha [1 ]
Kandasamy, Kathiresan [1 ]
Raj, Anburaj [1 ]
Alikunhi, Nabeel M. [1 ]
机构
[1] Annamalai Univ, Ctr Adv Study Marine Biol, Chidambaram 608502, Tamil Nadu, India
关键词
Callus; In vitro; Leaf extract; Sesuvium portulacastrum; Silver nanoparticle; GOLD; FUNGUS; BIOSYNTHESIS;
D O I
10.1016/j.colsurfb.2010.05.018
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The present work studied the effect of extracts from tissue culture-derived callus and leaf of the salt-marsh plant, Sesuvium portulacastrum L. on synthesis of antimicrobial silver nanoparticles using AgNO3 as a substrate. The callus extract could be able to produce silver nanoparticles, better than leaf extract. The synthesis of silver nanoparticles was confirmed with X-ray diffraction spectrum which exhibited intense peaks, corresponding to the (1 1 1), (2 0 0), (2 2 0), (3 1 1), and (2 2 2) sets of lattice planes of silver. The extracts incubated with AgNO3 showed gradual change in color of the extracts to yellowish brown, with intensity increasing during the period of incubation. Control without silver nitrate did not show any change in color. The silver nanoparticles synthesized were generally found to be spherical in shape with variable size ranging from 5 to 20 nm, as evident by Transmission Electron Microscopy. There were prominent peaks in the extracts corresponding to amide I, II and III indicating the presence of the protein, as revealed by Fourier transform infrared (FTIR) spectroscopy measurement. There were also peaks that were corresponding to aromatic rings, geminal methyls and ether linkages, indicating the presence of flavones and terpenoids responsible for the stabilization of the silver nanoparticles. The silver nanopartidies were observed to inhibit clinical strains of bacteria and fungi. The antibacterial activity was more distinct than antifungal activity. The antimicrobial activity was enhanced when polyvinyl alcohol was added as a stabilizing agent. The present work highlighted the possibility of using tissue culture-derived callus extract from the coastal saltmarsh species for the synthesis of antimicrobial silver nanoparticles. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:488 / 493
页数:6
相关论文
共 32 条
  • [1] Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum
    Ahmad, A
    Mukherjee, P
    Senapati, S
    Mandal, D
    Khan, MI
    Kumar, R
    Sastry, M
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2003, 28 (04) : 313 - 318
  • [2] Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution
    Ankamwar, B
    Damle, C
    Ahmad, A
    Sastry, M
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2005, 5 (10) : 1665 - 1671
  • [3] [Anonymous], 2009, J Appl Biosci.
  • [4] [Anonymous], 2004, BIONANOTECHNOLOGY LE
  • [5] Synthesis and antibacterial properties of silver nanoparticles
    Baker, C
    Pradhan, A
    Pakstis, L
    Pochan, DJ
    Shah, SI
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2005, 5 (02) : 244 - 249
  • [6] Green synthesis of silver nanoparticles using latex of Jatropha curcas
    Bar, Harekrishna
    Bhui, Dipak Kr.
    Sahoo, Gobinda R.
    Sarkar, Priyanka
    De, Sankar R.
    Misra, Ajay
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 339 (1-3) : 134 - 139
  • [7] Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract
    Chandran, SP
    Chaudhary, M
    Pasricha, R
    Ahmad, A
    Sastry, M
    [J]. BIOTECHNOLOGY PROGRESS, 2006, 22 (02) : 577 - 583
  • [8] Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles
    Gardea-Torresdey, JL
    Gomez, E
    Peralta-Videa, JR
    Parsons, JG
    Troiani, H
    Jose-Yacaman, M
    [J]. LANGMUIR, 2003, 19 (04) : 1357 - 1361
  • [9] Pepsin-gold colloid conjugates: Preparation, characterization, and enzymatic activity
    Gole, A
    Dash, C
    Ramakrishnan, V
    Sainkar, SR
    Mandale, AB
    Rao, M
    Sastry, M
    [J]. LANGMUIR, 2001, 17 (05) : 1674 - 1679
  • [10] Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method
    Huang, HZ
    Yang, XR
    [J]. CARBOHYDRATE RESEARCH, 2004, 339 (15) : 2627 - 2631