Hydroxyapatite functionalization of solid polymer electrolytes for high-conductivity solid-state lithium-ion batteries

被引:38
作者
Liang, Y. [1 ]
Liu, Y. [2 ]
Chen, D. [3 ]
Dong, L. [1 ]
Guang, Z. [2 ]
Liu, J. [1 ]
Yuan, B. [2 ]
Yang, M. [1 ,2 ]
Dong, Y. [2 ]
Li, Q. [2 ]
Yang, C. [1 ,4 ]
Tang, D. [1 ]
He, W. [2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Ctr Composite Mat & Struct, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150080, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China
[4] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state battery; Ionic conductivity; HAP filler; Negative potential vacancies; LIQUID; PRINCIPLES; CONDUCTORS; SEPARATOR; MEMBRANES; SUPERIOR; ANODE; SAFE;
D O I
10.1016/j.mtener.2021.100694
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a key component of next-generation high-safety lithium batteries, solid-state electrolytes (SSE) have attracted extensive attention. Polyethylene oxide (PEO)-based solid polymer electrolytes exhibit outstanding flexibility and excellent electrode-electrolyte interfaces in comparison with that of inorganic solid electrolytes. Unfortunately, the practical applications of PEO-based solid polymer electrolytes are severely limited by the low ionic conductivity arising from the sluggish segment movement of PEO crystal phase. Herein, an SSE design is presented, which leverages the good flexibility of PEO and enhances its ionic conductivity by directly introducing hydroxyapatite (HAP) as filler into solid polymer electrolyte. With negative potential vacancies of surface, HAP filler can facilitate lithium salt dissociation with a minor dissociation energy of -0.76 eV by attracting Li+. A remarkable ionic conductivity of 0.064 mS cm(-1) and a Li+ transference number of 0.366 at 30 degrees C are achieved. In addition, LiFePO4 (LFP)-Li cell with HAP-modified polymer SSE also delivers a capacity of 118 mAh g(-1) after 500 cycles at 1 C at 30 degrees C, which confirms the practical operability of novel SSE and the validity of HAP filler for SSE enhancement. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 57 条
[1]   Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview [J].
Agrawal, R. C. ;
Pandey, G. P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (22)
[2]   The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors [J].
Alarco, PJ ;
Abu-Lebdeh, Y ;
Abouimrane, A ;
Armand, M .
NATURE MATERIALS, 2004, 3 (07) :476-481
[3]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[4]   Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics [J].
Bernuy-Lopez, Carlos ;
Manalastas, William, Jr. ;
Lopez del Amo, Juan Miguel ;
Aguadero, Ainara ;
Aguesse, Frederic ;
Kilner, John A. .
CHEMISTRY OF MATERIALS, 2014, 26 (12) :3610-3617
[5]   Microscopic interactions in nanocomposite electrolytes [J].
Best, AS ;
Adebahr, J ;
Jacobsson, P ;
MacFarlane, DR ;
Forsyth, M .
MACROMOLECULES, 2001, 34 (13) :4549-4555
[6]   Porous sulfide scaffolded solvent-free PEG-Ti hybrid polymer: All-solution-processed thin film composite polymer electrolytes directly on electrodes for lithium-ion batteries [J].
Cai, Ting-Jhen ;
Lo, Yi-Hsuan ;
Wu, Jih-Jen .
MATERIALS TODAY ENERGY, 2019, 13 :119-124
[7]   In situ prepared nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries [J].
Cao, Jiang ;
Wang, Li ;
He, Xiangming ;
Fang, Mou ;
Gao, Jian ;
Li, Jianjun ;
Deng, Lingfeng ;
Chen, Hong ;
Tian, Guangyu ;
Wang, Jianlong ;
Fan, Shoushan .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (19) :5955-5961
[8]   An Upgraded Lithium Ion Battery Based on a Polymeric Separator Incorporated with Anode Active Materials [J].
Chen, Dongjiang ;
Zhou, Ziqi ;
Feng, Chao ;
Lv, Weiqiang ;
Wei, Zhaohuan ;
Zhang, Kelvin H. L. ;
Lin, Bin ;
Wu, Songhao ;
Lei, Tianyu ;
Guo, Xuyun ;
Zhu, Gaolong ;
Jian, Xian ;
Xiong, Jie ;
Traversa, Enrico ;
Dou, Shi Xue ;
He, Weidong .
ADVANCED ENERGY MATERIALS, 2019, 9 (15)
[9]   A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles [J].
Choudhury, Snehashis ;
Mangal, Rahul ;
Agrawal, Akanksha ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2015, 6
[10]   Increasing the conductivity of crystalline polymer electrolytes [J].
Christie, AM ;
Lilley, SJ ;
Staunton, E ;
Andreev, YG ;
Bruce, PG .
NATURE, 2005, 433 (7021) :50-53