Comparison of active region upflow and core properties using simultaneous spectroscopic observations from IRIS and Hinode

被引:10
作者
Barczynski, Krzysztof [1 ,2 ]
Harra, Louise [1 ,2 ]
Kleint, Lucia [3 ,4 ]
Panos, Brandon [3 ,4 ]
Brooks, David H. [5 ]
机构
[1] PMOD WRC, Dorfstr 33, CH-7260 Davos, Switzerland
[2] Swiss Fed Inst Technol, Honggerberg Campus,HIT Bldg, Zurich, Switzerland
[3] Univ Geneva, CUI, CH-1227 Carouge, Switzerland
[4] Univ Appl Sci & Arts Northwestern Switzerland, Bahnhofstr 6, CH-5210 Windisch, Switzerland
[5] George Mason Univ, Coll Sci, 4400 Univ Dr, Fairfax, VA 22030 USA
基金
瑞士国家科学基金会;
关键词
Sun: atmosphere; solar wind; methods: observational; techniques: spectroscopic; SLOW SOLAR-WIND; ULTRAVIOLET IMAGING SPECTROMETER; QUIET SUN; NONTHERMAL VELOCITIES; DOPPLER-SHIFT; OUTFLOWS; FLOWS; SPEED; CHROMOSPHERE; RECONNECTION;
D O I
10.1051/0004-6361/202140387
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The origin of the slow solar wind is still an open issue. It has been suggested that upflows at the edge of active regions are a possible source of the plasma outflow and therefore contribute to the slow solar wind.Aims. We investigate the origin and morphology of the upflow regions and compare the upflow region and the active region core properties.Methods. We studied how the plasma properties of flux, Doppler velocity, and non-thermal velocity change throughout the solar atmosphere, from the chromosphere via the transition region to the corona in the upflow region and the core of an active region. We studied limb-to-limb observations of the active region (NOAA 12687) obtained from 14 to 25 November 2017. We analysed spectroscopic data simultaneously obtained from IRIS and Hinode/EIS in the six emission lines MgII 2796.4 angstrom, CII 1335.71 angstrom, SiIV 1393.76 angstrom, FeXII 195.12 angstrom, FeXIII 202.04 angstrom, and FeXIV 270.52 angstrom and 274.20 angstrom. We studied the mutual relationships between the plasma properties for each emission line, and we compared the plasma properties between the neighbouring formation temperature lines. To find the most characteristic spectra, we classified the spectra in each wavelength using the machine learning technique k-means.Results. We find that in the upflow region the Doppler velocities of the coronal lines are strongly correlated, but the transition region and coronal lines show no correlation. However, their fluxes are strongly correlated. The upflow region has a lower density and lower temperature than the active region core. In the upflow region, the Doppler velocity and non-thermal velocity show a strong correlation in the coronal lines, but the correlation is not seen in the active region core. At the boundary between the upflow region and the active region core, the upflow region shows an increase in the coronal non-thermal velocity, the emission obtained from the DEM, and the domination of the redshifted regions in the chromosphere.Conclusions. The obtained results suggest that at least three parallel mechanisms generate the plasma upflow: (1) The reconnection between closed loops and open magnetic field lines in the lower corona or upper chromosphere; (2) the reconnection between the chromospheric small-scale loops and open magnetic field; and (3) the expansion of the magnetic field lines that allows the chromospheric plasma to escape to the solar corona.
引用
收藏
页数:16
相关论文
共 69 条
[1]   Slow Solar Wind: Observations and Modeling [J].
Abbo, L. ;
Ofman, L. ;
Antiochos, S. K. ;
Hansteen, V. H. ;
Harra, L. ;
Ko, Y. -K. ;
Lapenta, G. ;
Li, B. ;
Riley, P. ;
Strachan, L. ;
von Steiger, R. ;
Wang, Y. -M. .
SPACE SCIENCE REVIEWS, 2016, 201 (1-4) :55-108
[2]   The Solar Orbiter SPICE instrument: An extreme UV imaging spectrometer [J].
Anderson, M. ;
Appourchaux, T. ;
Auchere, F. ;
Cuadrado, R. Aznar ;
Barbay, J. ;
Baudin, F. ;
Beardsley, S. ;
Bocchialini, K. ;
Borgo, B. ;
Bruzzi, D. ;
Buchlin, E. ;
Burton, G. ;
Buchel, V. ;
Caldwell, M. ;
Caminade, S. ;
Carlsson, M. ;
Curdt, W. ;
Davenne, J. ;
Davila, J. ;
DeForest, C. E. ;
Del Zanna, G. ;
Drummond, D. ;
Dubau, J. ;
Dumesnil, C. ;
Dunn, G. ;
Eccleston, P. ;
Fludra, A. ;
Fredvik, T. ;
Gabriel, A. ;
Giunta, A. ;
Gottwald, A. ;
Griffin, D. ;
Grundy, T. ;
Guest, S. ;
Gyo, M. ;
Haberreiter, M. ;
Hansteen, V. ;
Harrison, R. ;
Hassler, D. M. ;
Haugan, S. V. H. ;
Howe, C. ;
Janvier, M. ;
Klein, R. ;
Koller, S. ;
Kucera, T. A. ;
Kouliche, D. ;
Marsch, E. ;
Marshall, A. ;
Marshall, G. ;
Matthews, S. A. .
ASTRONOMY & ASTROPHYSICS, 2020, 642
[3]   VELOCITY-GRADIENTS IN THE CHROMOSPHERE-CORONA TRANSITION REGION [J].
ATHAY, RG ;
DERE, KP .
ASTROPHYSICAL JOURNAL, 1991, 381 (01) :323-+
[4]   MAGNETIC RECONNECTION ALONG QUASI-SEPARATRIX LAYERS AS A DRIVER OF UBIQUITOUS ACTIVE REGION OUTFLOWS [J].
Baker, D. ;
van Driel-Gesztelyi, L. ;
Mandrini, C. H. ;
Demoulin, P. ;
Murray, M. J. .
ASTROPHYSICAL JOURNAL, 2009, 705 (01) :926-935
[5]   Apparent and Intrinsic Evolution of Active Region Upflows [J].
Baker, Deborah ;
Janvier, Miho ;
Demoulin, Pascal ;
Mandrini, Cristina H. .
SOLAR PHYSICS, 2017, 292 (04)
[6]   FURTHER MEASUREMENTS OF EMISSION-LINE PROFILES IN SOLAR ULTRAVIOLET-SPECTRUM [J].
BOLAND, BC ;
DYER, EP ;
FIRTH, JG ;
GABRIEL, AH ;
JONES, BB ;
JORDAN, C ;
MCWHIRTER, RWP ;
MONK, P ;
TURNER, RF .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1975, 171 (03) :697-&
[7]  
Brooks D.H., 2020, APJ, V894, P144
[8]   MEASUREMENTS OF NON-THERMAL LINE WIDTHS IN SOLAR ACTIVE REGIONS [J].
Brooks, David H. ;
Warren, Harry P. .
ASTROPHYSICAL JOURNAL, 2016, 820 (01)
[9]   Sumer measurements of nonthermal motions:: Constraints on coronal heating mechanisms [J].
Chae, J ;
Schühle, U ;
Lemaire, P .
ASTROPHYSICAL JOURNAL, 1998, 505 (02) :957-973
[10]   SPECTROSCOPIC ANALYSIS OF INTERACTION BETWEEN AN EXTREME-ULTRAVIOLET IMAGING TELESCOPE WAVE AND A CORONAL UPFLOW REGION [J].
Chen, F. ;
Ding, M. D. ;
Chen, P. F. ;
Harra, L. K. .
ASTROPHYSICAL JOURNAL, 2011, 740 (02)