Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes

被引:38
作者
Lim, Hyo-Ryoung [1 ]
Lee, Soon Min [2 ]
Park, Sehyun [3 ,4 ]
Choi, Chanyeong [4 ]
Kim, Hojoong [4 ,5 ]
Kim, Jihoon [4 ,5 ]
Mahmood, Musa [4 ,5 ]
Lee, Yongkuk [6 ]
Kim, Jong-Hoon [3 ]
Yeo, Woon-Hong [4 ,5 ,7 ,8 ]
机构
[1] Pukyong Natl Univ, Coll Informat Technol & Convergence, Div Smart Healthcare, Major Human Biocovergence, Busan 48513, South Korea
[2] Yonsei Univ Coll Med, Gangnam Severance Hosp, Dept Pediat, Seoul 06273, South Korea
[3] Washington State Univ, Sch Engn & Comp Sci, Vancouver, WA 98686 USA
[4] Georgia Inst Technol, Engn Inst Elect & Nanotechnol, IEN Ctr Human Centr Interfaces, Atlanta, GA 30332 USA
[5] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[6] Wichita State Univ, Dept Biomed Engn, Wichita, KS 67260 USA
[7] Georgia Tech & Emory Univ, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[8] Georgia Inst Technol, Inst Robot & Intelligent Machines, Inst Mat, Neural Engn Ctr, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Non-invasive monitoring; Salivary electrolyte; Bioelectronic pacifier; Capillary reservoir; Ion-selective electrode; ION-SELECTIVE ELECTRODES; POTASSIUM INTAKE; SOLID-CONTACT; SODIUM; SWEAT; WIRELESS; DEVICES; ARRAY; RISK;
D O I
10.1016/j.bios.2022.114329
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Monitoring electrolytes is critical for newborns and babies in the intensive care unit. However, the gold standard methods use a blood draw, which is painful and only offers discrete measures. Although salivary-based detection offers promise as an alternative, existing devices are ineffective for real-time, continuous monitoring of electrolytes due to their rigidity, bulky form factors, and lack of salivary accumulation. Here, we introduce a smart, wireless, bioelectronic pacifier for salivary electrolyte monitoring of neonates, which can detect real-time continuous sodium and potassium levels without a blood draw. The miniature system facilitates the seamless integration of the ultralight and low-profile device with a commercial pacifier without additional fixtures or structural modifications. The portable device includes ion-selective sensors, flexible circuits, and microfluidic channels, allowing simplified measurement protocols in non-invasive electrolyte monitoring. The flexible microfluidic channel enables continuous and efficient saliva collection from a mouth. By modifying the surface properties of the channels and the structure of the capillary reservoir, we achieve reliable pumping of the viscous medium for quick calibration and measurement. Embedded sensors in the system show good stability and sensitivity: 52 and 57 mV/decade for the sodium and potassium sensor, respectively. In vivo study with neonates in the intensive care unit captures the device's feasibility and performance in the natural saliva-based detection of the critical electrolytes without induced stimulation.
引用
收藏
页数:9
相关论文
共 47 条
[1]   Toward a highly selective artificial saliva sensor using printed hybrid field effect transistors [J].
Bao, Chao ;
Kaur, Manpreet ;
Kim, Woo Soo .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 285 :186-192
[2]   The use of topical nitroglycerin ointment to treat peripheral tissue ischemia secondary to arterial line complications in neonates [J].
Baserga M.C. ;
Puri A. ;
Sola A. .
Journal of Perinatology, 2002, 22 (5) :416-419
[3]   Saliva sampling: Methods and devices. An overview [J].
Bellagambi, Francesca G. ;
Lomonaco, Tommaso ;
Salvo, Pietro ;
Vivaldi, Federico ;
Hangouet, Marie ;
Ghimenti, Silvia ;
Biagini, Denise ;
Di Francesco, Fabio ;
Fuoco, Roger ;
Errachid, Abdelhamid .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2020, 124 (124)
[4]   Potentiometric ion sensors [J].
Bobacka, Johan ;
Ivaska, Ari ;
Lewenstam, Andrzej .
CHEMICAL REVIEWS, 2008, 108 (02) :329-351
[5]  
Bonner O., 2017, BMJ INNOV, V3
[6]   Thin, Soft, Skin-Mounted Microfluidic Networks with Capillary Bursting Valves for Chrono-Sampling of Sweat [J].
Choi, Jungil ;
Kang, Daeshik ;
Han, Seungyong ;
Kim, Sung Bong ;
Rogers, John A. .
ADVANCED HEALTHCARE MATERIALS, 2017, 6 (05)
[7]  
Cilley R E, 1992, Semin Pediatr Surg, V1, P174
[8]   INTEGRATED MICRO MULTI ION SENSOR USING FIELD-EFFECT OF SEMICONDUCTOR [J].
ESASHI, M ;
MATSUO, T .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1978, 25 (02) :184-192
[9]   Perspective-Challenges in Developing Wearable Electrochemical Sensors for Longitudinal Health Monitoring [J].
Fan, Ruolan ;
Andrew, Trisha L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (03)
[10]   Pacifier Biosensor: Toward Noninvasive Saliva Biomarker Monitoring [J].
Garcia-Carmona, Laura ;
Martin, Aida ;
Sempionatto, Juliane R. ;
Moreto, Jose R. ;
Gonzalez, Maria Cristina ;
Wang, Joseph ;
Escarpa, Alberto .
ANALYTICAL CHEMISTRY, 2019, 91 (21) :13883-13891