Leibniz algebras of Heisenberg type

被引:10
|
作者
Calderon, A. J. [1 ]
Camacho, L. M. [2 ]
Omirov, B. A. [3 ]
机构
[1] Univ Cadiz, Dept Matemat, Cadiz 11510, Spain
[2] Univ Seville, Dept Matemat Aplicada 1, Avda Reina Mercedes S-N, E-41012 Seville, Spain
[3] Natl Univ Uzbekistan, Inst Math, F Hodjaev Str 29, Tashkent 100125, Uzbekistan
关键词
Heisenberg algebra; Leibniz algebra; Fock representation; Minimal faithful representation; FOCK REPRESENTATIONS; HILBERT-SPACE; FILIFORM;
D O I
10.1016/j.jalgebra.2015.12.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and provide a classification theorem for the class of Heisenberg-Fock Leibniz algebras. This type of algebras is formed by those Leibniz algebras L whose corresponding Lie algebras are isomorphic to Heisenberg algebras H-n and whose H-n-modules I, where I denotes the ideal generated by the squares of elements of L, are isomorphic to Back modules. We also consider the three-dimensional Heisenberg algebra H-3 and study three classes of Leibniz algebras with H-3 as corresponding Lie algebra, by taking certain generalizations of the Fock module. Moreover, we describe the class of Leibniz algebras with H-n as corresponding Lie algebra and such that the action I x H-n -> I gives rise to a minimal faithful representation of H-n. The classification of this family of Leibniz algebras for the case of n = 3 is given. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:427 / 447
页数:21
相关论文
共 50 条
  • [1] Solvable Leibniz Algebras with Heisenberg Nilradical
    Bosko-Dunbar, Lindsey
    Dunbar, Jonathan D.
    Hird, J. T.
    Stagg, Kristen
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (06) : 2272 - 2281
  • [2] Gradings and symmetries on Heisenberg type algebras
    Calderon Martin, Antonio Jesus
    Draper Fontanals, Cristina
    Martin Gonzalez, Candido
    Sanchez Delgado, Jose Maria
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 463 - 502
  • [3] On Leibniz algebras
    Ayupov, SA
    Omirov, BA
    ALGEBRA AND OPERATOR THEORY, 1998, : 1 - 12
  • [4] Leibniz Algebras and Lie Algebras
    Mason, Geoffrey
    Yamskulna, Caywalee
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [5] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Stitzinger, Ernie
    White, Ashley
    ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (03) : 627 - 633
  • [6] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Ernie Stitzinger
    Ashley White
    Algebras and Representation Theory, 2018, 21 : 627 - 633
  • [7] Leibniz algebras constructed by Witt algebras
    Camacho, L. M.
    Omirov, B. A.
    Kurbanbaev, T. K.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (10): : 2048 - 2064
  • [8] Representations of Leibniz Algebras
    A. Fialowski
    É. Zs. Mihálka
    Algebras and Representation Theory, 2015, 18 : 477 - 490
  • [9] Subinvariance in Leibniz algebras
    Misra, Kailash C.
    Stitzinger, Ernie
    Yu, Xingjian
    JOURNAL OF ALGEBRA, 2021, 567 : 128 - 138
  • [10] Leibniz algebras graded by finite root systems of type Cl
    D. Liu
    N. Hu
    Siberian Mathematical Journal, 2012, 53 (3) : 490 - 501