Modelling of strength and energy absorption capacity of hybrid fibre-reinforced concrete

被引:1
|
作者
Gifta, Christopher Chella [1 ]
Gopal, Ramesh [2 ]
机构
[1] Natl Engn Coll, Dept Civil Engn, Kr Nagar, Kovilpatti, India
[2] CSIR SERC, Adv Mat Lab, Chennai, Tamil Nadu, India
关键词
fibre-reinforced concrete; modelling; toughness; MECHANICAL-PROPERTIES; NEURAL-NETWORKS; COMPRESSIVE STRENGTH; PREDICTION;
D O I
10.1680/jmacr.20.00191
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study presents an estimate of various strength and toughness properties of steel-polyester hybrid fibrereinforced concrete obtained using artificial neural network techniques. Input parameters used in the development of single and hybrid fibre-reinforced concrete composites in the experimental programme were given as input variables in artificial neural network models. The constituents of concrete, such as cement, fly ash, silica fume, sand, coarse aggregate, water, chemical admixture, steel fibre, polyester fibre and its combinations, were used as input parameters in artificial neural network modelling. Two artificial neural network models were proposed, trained, tested and validated to predict the compressive strength, split tensile strength, flexural strength, impact resistance and energy absorption capacity of single and hybrid fibre-reinforced concrete composites. The performances of these two artificial neural network models were compared based on probabilistic analysis. Regression plots made between experimental output and predicted output values yielded good correlation. From the regression plots, it is understood that this neural network is an effective tool in predicting the strength or toughness of the steel-polyester hybrid fibre-reinforced composites. By adopting these neural network techniques, expensive laboratory arrangements, costs of testing, and waits for curing time could be saved.
引用
收藏
页码:410 / 419
页数:10
相关论文
共 50 条
  • [21] Strength characteristics of fibre-reinforced concrete containing nano-silica
    Adetukasi, A. O.
    Fadugba, O. G.
    Adebakin, I. H.
    Omokungbe, O.
    MATERIALS TODAY-PROCEEDINGS, 2021, 38 : 584 - 589
  • [22] The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete
    Kang, Su Tae
    Lee, Bang Yeon
    Kim, Jin-Keun
    Kim, Yun Yong
    CONSTRUCTION AND BUILDING MATERIALS, 2011, 25 (05) : 2450 - 2457
  • [23] Impact resistance of high strength chopped basalt fibre-reinforced concrete
    Sateshkumar, Sathes Kumar
    Awoyera, Paul Oluwaseun
    Kandasamy, Tamilarasan
    Nagaraj, Sathishktunar
    Murugesan, Praveenkumar
    Ponnusamy, Boopathirasan
    REVISTA DE LA CONSTRUCCION, 2018, 17 (02): : 240 - 248
  • [24] Analytical calculation of the in-plane shear strength of fibre-reinforced concrete
    Valente, Rui
    ENGINEERING STRUCTURES, 2024, 315
  • [25] STRENGTH AND FRACTURE PROPERTIES OF HYBRID FIBRE REINFORCED CONCRETE
    Thirumurugan, A.
    Sivaraja, M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2015, 39 (C1) : 93 - 102
  • [26] Fracture behaviour of hybrid fibre-reinforced roller-compacted concrete used in pavements
    Scorza, Daniela
    Luciano, Raimondo
    Mousa, Saeed
    Vantadori, Sabrina
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 271
  • [27] Mechanical Properties of High-Performance Hybrid Fibre-Reinforced Concrete at Elevated Temperatures
    Mubarak, Moawiah
    Muhammad Rashid, Raizal Saifulnaaz
    Amran, Mugahed
    Fediuk, Roman
    Vatin, Nikolai
    Klyuev, Sergey
    SUSTAINABILITY, 2021, 13 (23)
  • [28] Experimental and numerical-based design of hybrid steel fibre-reinforced concrete tunnels
    Avanaki, Mohammad Jamshidi
    Abedi, Mohammad
    Hoseini, Abdollah
    MAGAZINE OF CONCRETE RESEARCH, 2020, 72 (14) : 720 - 733
  • [29] Effect of fibre aspect ratio on the torsional behaviour of steel fibre-reinforced normal weight concrete and lightweight concrete
    Yap, Soon Poh
    Khaw, Kuan Ren
    Alengaram, U. Johnson
    Jumaat, Mohd Zamin
    ENGINEERING STRUCTURES, 2015, 101 : 24 - 33
  • [30] Influence of fibre volume fraction and fibre orientation on the residual flexural tensile strength of fibre-reinforced concrete
    Minguez Algarra, Jesus
    Gonzalez Cabrera, Dorys
    Vicente Cabrera, Miguel Angel
    HORMIGON Y ACERO, 2019, 70 (287): : 15 - 21