On the existence of solutions to BSDEs with generalized uniformly continuous generators

被引:3
作者
Tian, Dejian [1 ]
Jiang, Long [1 ]
Davison, Matt [2 ]
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221116, Peoples R China
[2] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
关键词
STOCHASTIC DIFFERENTIAL-EQUATIONS; THEOREM;
D O I
10.1016/j.spl.2010.01.026
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proves an existence result for a kind of backward stochastic differential equation whose generators satisfy generalized uniformly continuous conditions in variables y and z. It is worth noting that the conditions mentioned above may not be uniform with respect to time parameter t. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:903 / 909
页数:7
相关论文
共 13 条
[1]   A CONVERSE COMPARISON THEOREM FOR BSDES AND RELATED PROPERTIES OF g-EXPECTATION [J].
Briand, Philippe ;
Coquet, Francois ;
Hu, Ying ;
Memin, Jean ;
Peng, Shige .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 :101-117
[2]   Infinite time interval BSDES and the convergence of g-martingales [J].
Chen, ZJ ;
Wang, B .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2000, 69 :187-211
[3]   Existence and uniqueness for BSDE with stopping time [J].
Chen, ZJ .
CHINESE SCIENCE BULLETIN, 1998, 43 (02) :96-99
[4]   Backward stochastic differential equations in finance [J].
El Karoui, N ;
Peng, S ;
Quenez, MC .
MATHEMATICAL FINANCE, 1997, 7 (01) :1-71
[5]   A class of backward stochastic differential equations with discontinuous coefficients [J].
Ha, Guangyan .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (03) :231-237
[6]   Multidimensional backward stochastic differential equations with uniformly continuous coefficients [J].
Hamadène, S .
BERNOULLI, 2003, 9 (03) :517-534
[7]  
Heikkila S., 1994, MONOTONE ITERATIVE T
[8]   A generalized existence theorem of BSDEs [J].
Jia, GY .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (09) :685-688
[9]   Backward stochastic differential equations and partial differential equations with quadratic growth [J].
Kobylanski, M .
ANNALS OF PROBABILITY, 2000, 28 (02) :558-602
[10]   Backward stochastic differential equations with continuous coefficient [J].
Lepeltier, JP ;
SanMartin, J .
STATISTICS & PROBABILITY LETTERS, 1997, 32 (04) :425-430