Na2M2(SO4)3 (M = Fe, Mn, Co and Ni): towards high-voltage sodium battery applications

被引:40
作者
Araujo, Rafael B. [1 ]
Chakraborty, Sudip [1 ]
Barpanda, Prabeer [3 ]
Ahuja, Rajeev [1 ,2 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, Condensed Matter Theory Grp, Box 516, S-75120 Uppsala, Sweden
[2] Royal Inst Technol KTH, Appl Mat Phys, Dept Mat & Engn, S-10044 Stockholm, Sweden
[3] Indian Inst Sci, Faraday Mat Lab, Mat Res Ctr, CV Raman Ave, Bangalore 560012, Karnataka, India
基金
瑞典研究理事会;
关键词
POSITIVE ELECTRODE; CATHODE MATERIALS; ION BATTERIES; LITHIUM; PHASE; INSERTION; STABILITY; DIFFUSION; INSIGHTS;
D O I
10.1039/c6cp00070c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion-based batteries have evolved as excellent alternatives to their lithium-ion-based counterparts due to the abundance, uniform geographical distribution and low price of Na resources. In the pursuit of sodium chemistry, recently the alluaudite framework Na2M2(SO4)(3) has been unveiled as a high-voltage sodium insertion system. In this context, the framework of density functional theory has been applied to systematically investigate the crystal structure evolution, density of states and charge transfer with sodium ions insertion, and the corresponding average redox potential, for Na2M2(SO4)(3) (M = Fe, Mn, Co and Ni). It is shown that full removal of sodium atoms from the Fe-based device is not a favorable process due to the 8% volume shrinkage. The imaginary frequencies obtained in the phonon dispersion also reflect this instability and the possible phase transition. This high volume change has not been observed in the cases of the Co- and Ni-based compounds. This is because the redox reaction assumes a different mechanism for each of the compounds investigated. For the polyanion with Fe, the removal of sodium ions induces a charge reorganization at the Fe centers. For the Mn case, the redox process induces a charge reorganization of the Mn centers with a small participation of the oxygen atoms. The Co and Ni compounds present a distinct trend with the redox reaction occurring with a strong participation of the oxygen sublattice, resulting in a very small volume change upon desodiation. Moreover, the average deintercalation potential for each of the compounds has been computed. The implications of our findings have been discussed both from the scientific perspective and in terms of technological aspects.
引用
收藏
页码:9658 / 9665
页数:8
相关论文
共 29 条
[1]   Predicting electrochemical properties and ionic diffusion in Na2+2xMn2-x(SO4)3: crafting a promising high voltage cathode material [J].
Araujo, Rafael B. ;
Islam, M. S. ;
Chakraborty, Sudip ;
Ahuja, R. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (02) :451-457
[2]  
Bader R. F. W., 1994, ATOMS MOL QUANTUM TH
[3]   Sulfate Chemistry for High-Voltage Insertion Materials: Synthetic, Structural and Electrochemical Insights [J].
Barpanda, Prabeer .
ISRAEL JOURNAL OF CHEMISTRY, 2015, 55 (05) :537-557
[4]   A 3.8-V earth-abundant sodium battery electrode [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2014, 5
[5]   Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries [J].
Barpanda, Prabeer ;
Ye, Tian ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Yuki ;
Okubo, Masashi ;
Zhou, Haoshen ;
Yamada, Atsuo .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 24 :116-119
[6]   Structural, Transport, and Electrochemical Investigation of Novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) Metal Fluorosulphates Prepared Using Low Temperature Synthesis Routes [J].
Barpanda, Prabeer ;
Chotard, Jean-Noel ;
Recham, Nadir ;
Delacourt, Charles ;
Ati, Mohamed ;
Dupont, Loic ;
Armand, Michel ;
Tarascon, Jean-Marie .
INORGANIC CHEMISTRY, 2010, 49 (16) :7401-7413
[7]   GEOMETRY OF POLYHEDRAL DISTORTIONS - PREDICTIVE RELATIONSHIPS FOR PHOSPHATE GROUP [J].
BAUR, WH .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1974, 30 (MAY15) :1195-1215
[8]   Synthesis, Computed Stability, and Crystal Structure of a New Family of Inorganic Compounds: Carbonophosphates [J].
Chen, Hailong ;
Hautier, Geoffroy ;
Ceder, Gerbrand .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (48) :19619-19627
[9]   Polymorphs of LiFeSO4F as cathode materials for lithium ion batteries - a first principle computational study [J].
Chung, Sai Cheong ;
Barpanda, Prabeer ;
Nishimura, Shin-ichi ;
Yamada, Yuki ;
Yamada, Atsuo .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (24) :8678-8682
[10]   High voltage sulphate cathodes Li2M(SO4)2 (M = Fe, Mn, Co): atomic-scale studies of lithium diffusion, surfaces and voltage trends [J].
Clark, John M. ;
Eames, Christopher ;
Reynaud, Marine ;
Rousse, Gwenaelle ;
Chotard, Jean-Noel ;
Tarascon, Jean-Marie ;
Islam, M. Saiful .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (20) :7446-7453