Hamilton-Jacobi theory and the heat kernel on Heisenberg groups

被引:130
作者
Beals, R
Gaveau, B
Greiner, PC
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Univ Paris 06, F-75252 Paris 05, France
[3] Univ Toronto, Toronto, ON, Canada
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2000年 / 79卷 / 07期
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Heisenberg group; sub-Riemannian geometry; Carnot-Caratheodory metric; subelliptic diffusion; Hamiltonian mechanics;
D O I
10.1016/S0021-7824(00)00169-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subelliptic geometry of Heisenberg groups is worked out in detail and related to complex Hamiltonian mechanics. The two geometric pictures are essential for complete understanding of the heat equation for the subelliptic Laplacian. We give a complete description of the geodesics and obtain precise global estimates and small-time asymptotics of the heat kernel. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:633 / 689
页数:57
相关论文
共 40 条
  • [1] [Anonymous], J DIFFER GEOM
  • [2] AZENCOTT R, 1980, LECT NOTES MATH, V774, P1
  • [3] A note on fundamental solutions
    Beals, R
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (1-2) : 369 - 376
  • [4] The green function of model step two hypoelliptic operators and the analysis of certain tangential cauchy Riemann complexes
    Beals, R
    Gaveau, B
    Greiner, P
    [J]. ADVANCES IN MATHEMATICS, 1996, 121 (02) : 288 - 345
  • [5] Beals R, 1997, B SCI MATH, V121, P1
  • [6] Beals R, 1997, B SCI MATH, V121, P97
  • [7] Beals R, 1997, B SCI MATH, V121, P195
  • [8] Beals R, 1996, MATH NACHR, V181, P81
  • [9] BEALS R, 1988, ANN MATH STUDIES, V119
  • [10] BEALS R, UNPUB HEAT KERNEL CO