New results on monotone dualization and generating hypergraph transversals

被引:85
作者
Eiter, T
Gottlob, G
Makino, K
机构
[1] Vienna Tech Univ, Inst Informat Syst, A-1040 Vienna, Austria
[2] Osaka Univ, Div Syst Sci, Grad Sch Engn Sci, Osaka 5608531, Japan
关键词
dualization; hypergraphs; transversal computation; output-polynomial algorithms; combinatorial enumeration; treewidth; hypergraph acyclicity; limited nondeterminism;
D O I
10.1137/S009753970240639X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of dualizing a monotone CNF (equivalently, computing all minimal transversals of a hypergraph) whose associated decision problem is a prominent open problem in NP-completeness. We present a number of new polynomial time, respectively, output-polynomial time results for significant cases, which largely advance the tractability frontier and improve on previous results. Furthermore, we show that duality of two monotone CNFs can be disproved with limited nondeterminism. More precisely, this is feasible in polynomial time with O(log(2) n/log log n) suitably guessed bits. This result sheds new light on the complexity of this important problem.
引用
收藏
页码:514 / 537
页数:24
相关论文
共 53 条
[1]  
Algorithms E., 1992, ANN DISCRETE MATH, V53, P221, DOI DOI 10.1016/S0167-5060(08)70325-X
[2]  
[Anonymous], LNCS
[3]  
[Anonymous], LNCS
[4]  
Beigel R, 1997, LECT NOTES COMPUT SC, V1256, P816
[5]   Molecular computing, bounded nondeterminism, and efficient recursion [J].
Beigel, R ;
Fu, B .
ALGORITHMICA, 1999, 25 (2-3) :222-238
[6]   COMPLEXITY OF IDENTIFICATION AND DUALIZATION OF POSITIVE BOOLEAN FUNCTIONS [J].
BIOCH, JC ;
IBARAKI, T .
INFORMATION AND COMPUTATION, 1995, 123 (01) :50-63
[7]  
Boros E., 2000, Parallel Processing Letters, V10, P253, DOI 10.1142/S0129626400000251
[8]   Dual-bounded generating problems: All minimal integer solutions for a monotone system of linear inequalities [J].
Boros, E ;
Elbassioni, K ;
Gurvich, V ;
Khachiyan, L ;
Makino, K .
SIAM JOURNAL ON COMPUTING, 2002, 31 (05) :1624-1643
[9]   Dual subimplicants of positive Boolean functions [J].
Boros, E ;
Gurvich, V ;
Hammer, PL .
OPTIMIZATION METHODS & SOFTWARE, 1998, 10 (02) :147-156
[10]   Polynomial-time recognition of 2-monotonic positive Boolean functions given by an oracle [J].
Boros, E ;
Hammer, PL ;
Ibaraki, T ;
Kawakami, K .
SIAM JOURNAL ON COMPUTING, 1997, 26 (01) :93-109