Birationally rigid varieties with a pencil of double Fano covers. I

被引:6
作者
Pukhlikov, AV [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow, Russia
关键词
D O I
10.1070/SM2004v195n07ABEH000837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The general Fano fibration pi: V --> P-1 the fibre of which is a double Fano hypersurface of index 1 is proved to be birationally superrigid, provided it is sufficiently twisted over the base. In particular, there exist on V no other structures of a rationally convex fibration. The proof is based on the method of maximal singularities.
引用
收藏
页码:1039 / 1071
页数:33
相关论文
共 30 条
[1]  
[Anonymous], IZV AKAD NAUK SSSR M
[2]  
BROWN G, 2003, ARXIVMATHAG0307301
[3]  
Corti A, 2000, LOND MATH S, V281, P175
[4]  
Corti A., 1995, J. Algebraic Geom., V4, P223
[5]   Families of rationally connected varieties [J].
Graber, T ;
Harris, J ;
Starr, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) :57-67
[6]  
Grinenko, 2000, MAT SBORNIK, V191, P17, DOI 10.4213/sm475
[7]  
Iskovskih V. A., 1971, MAT SBORNIK, V15, P141
[8]  
Iskovskih VA., 1967, MAT SBORNIK, V74, P608
[9]  
Iskovskih VA., 1970, MAT SBORNIK, V83, P90, DOI DOI 10.1070/SM1970V012N01ABEH000912
[10]  
Manin Y.I., 1967, MAT SBORNIK, V72, P161