Classical and Bayesian Inference for the Inverse Lomax Distribution Under Adaptive Progressive Type-II Censored Data with COVID-19 Application

被引:5
作者
Hora, Rashi [1 ]
Kabdwal, Naresh Chandra [1 ]
Srivastava, Pulkit [2 ]
机构
[1] Banasthali Vidyapith, Dept Math & Stat, Tonk 304022, Rajasthan, India
[2] Univ Delhi, Dept Stat, Delhi 110007, India
来源
JOURNAL OF RELIABILITY AND STATISTICAL STUDIES | 2022年 / 15卷 / 02期
关键词
Inverse Lomax distribution; adaptive progressive type-II censoring; maximum likelihood estimator; Bayesian estimation; Markov chain Monte Carlo; COVID-19; STATISTICAL-INFERENCE; EXPONENTIAL-DISTRIBUTION; RELIABILITY FUNCTION; PREDICTION; MODEL;
D O I
10.13052/jrss0974-8024.1525
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the classical and the Bayesian inferences for unknown parameters of inverse Lomax distribution and their corresponding survival characteristics under the adaptive progressive type-II censoring scheme. In the classical setup, first we obtain the maximum likelihood estimates for the unknown shape parameter of the distribution and its corresponding survival characteristics. Further, we consider symmetric and asymmetric loss functions for the estimation of shape parameter and its corresponding survival characteristics under the Bayesian paradigm. The performances of various derived estimators were recorded using Markov chain Monte Carlo simulation technique for different sample sizes. Finally, a COVID-19 mortality data set is provided to illustrate the computation of various estimators.
引用
收藏
页码:505 / 534
页数:30
相关论文
共 46 条
[1]  
Adegoke T. M., 2018, P 2 INT C, P328
[2]  
Ahsanullah M., 1991, Stat. Neerl, V45, P21, DOI [DOI 10.1111/J.1467-9574.1991.TB01290.X, 10.1111/j.1467-9574.1991.tb01290.x]
[3]  
AITCHISON J., 1975, Statistical Prediction Analysis
[4]   Estimation for the exponentiated Weibull model with adaptive Type-II progressive censored schemes [J].
AL Sobhi, Mashail M. ;
Soliman, Ahmed A. .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (02) :1180-1192
[5]   Estimation of the Generalized Logarithmic Transformation Exponential Distribution under Progressively Type-II Censored Data with Application to the COVID-19 Mortality Rates [J].
Albalawi, Olayan ;
Kabdwal, Naresh Chandra ;
Azhad, Qazi J. ;
Hora, Rashi ;
Alsaedi, Basim S. O. .
MATHEMATICS, 2022, 10 (07)
[6]  
Almetwally E. M., 2019, Journal of Data Science, V17, P802, DOI DOI 10.6339/JDS.20191017(4).0010
[7]   A new extended rayleigh distribution with applications of COVID-19 data [J].
Almongy, Hisham M. ;
Almetwally, Ehab M. ;
Aljohani, Hassan M. ;
Alghamdi, Abdulaziz S. ;
Hafez, E. H. .
RESULTS IN PHYSICS, 2021, 23
[8]  
[Anonymous], 1968, FUTURE STAT
[9]  
[Anonymous], 1967, Mathematical Statistics. A Decision Theoretic Approach
[10]   A SIMPLE SIMULATIONAL ALGORITHM FOR GENERATING PROGRESSIVE TYPE-II CENSORED SAMPLES [J].
BALAKRISHNAN, N ;
SANDHU, RA .
AMERICAN STATISTICIAN, 1995, 49 (02) :229-230