Nonlocal solitons in fractional dimensions

被引:50
作者
Dong, Liangwei [1 ,3 ]
Huang, Changming [2 ]
Qi, Wei [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Dept Phys, Xian 710021, Shaanxi, Peoples R China
[2] Changzhi Univ, Dept Elect Informat & Phys, Changzhi 046011, Shanxi, Peoples R China
[3] Shaanxi Univ Sci & Technol, Inst Theoret Phys, Xian 710021, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
SCHRODINGER-EQUATION; GAP SOLITONS; PROPAGATION; BEAMS;
D O I
10.1364/OL.44.004917
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report the existence and stability properties of multipole-mode solitons supported by the nonlinear Schrodinger equation featuring a combination of the fractional-order diffraction effect and nonlocal focusing Kerr-type nonlinearity. We reveal that multipole-mode solitons, including an arbitrary number of peaks, can propagate stably in fractional systems provided that the propagation constant exceeds a certain value, which is in sharp contrast to conventional nonlocal systems under a normal diffraction, where bound states composed of five peaks or more are completely unstable. Thus, we demonstrate, to the best of our knowledge, the first example of nonlocal solitons in fractional configurations. (C) 2019 Optical Society of America
引用
收藏
页码:4917 / 4920
页数:4
相关论文
共 31 条
[1]   Laguerre and Hermite soliton clusters in nonlocal nonlinear media [J].
Buccoliero, Daniel ;
Desyatnikov, Anton S. ;
Krolikowski, Wieslaw ;
Kivshar, Yuri S. .
PHYSICAL REVIEW LETTERS, 2007, 98 (05)
[2]   Double-hump solitons in fractional dimensions with a PT-symmetric potential [J].
Dong, Liangwei ;
Huang, Changming .
OPTICS EXPRESS, 2018, 26 (08) :10509-10518
[3]   Stability of multipole-mode solitons in thermal nonlinear media [J].
Dong, Liangwei ;
Ye, Fangwei .
PHYSICAL REVIEW A, 2010, 81 (01)
[4]   Beam propagation management in a fractional Schrodinger equation [J].
Huang, Changming ;
Dong, Liangwei .
SCIENTIFIC REPORTS, 2017, 7
[5]   Gap solitons in the nonlinear fractional Schrodinger equation with an optical lattice [J].
Huang, Changming ;
Dong, Liangwei .
OPTICS LETTERS, 2016, 41 (24) :5636-5639
[6]   Stable vortex soliton in nonlocal media with orientational nonlinearity [J].
Izdebskaya, Yana V. ;
Shvedov, Vladlen G. ;
Jung, Pawel S. ;
Krolikowski, Wieslaw .
OPTICS LETTERS, 2018, 43 (01) :66-69
[7]   Multipole vector solitons in nonlocal nonlinear media [J].
Kartashov, Yaroslav V. ;
Torner, Lluis ;
Vysloukh, Victor A. ;
Mihalache, Dumitru .
OPTICS LETTERS, 2006, 31 (10) :1483-1485
[8]   Stabilization of higher-order vortices and multihump solitons in media with synthetic nonlocal nonlinearities [J].
Kartashov, Yaroslav V. ;
Vysloukh, Victor A. ;
Torner, Lluis .
PHYSICAL REVIEW A, 2009, 79 (01)
[9]   Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media [J].
Królikowski, W ;
Bang, O ;
Nikolov, NI ;
Neshev, D ;
Wyller, J ;
Rasmussen, JJ ;
Edmundson, D .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (05) :S288-S294
[10]   Solitons in nonlocal nonlinear media:: Exact solutions -: art. no. 016610 [J].
Królikowski, W ;
Bang, O .
PHYSICAL REVIEW E, 2001, 63 (01)