THE MINIMAL GROWTH OF A k-REGULAR SEQUENCE

被引:15
作者
Bell, Jason P. [1 ]
Coons, Michael [2 ]
Hare, Kevin G. [1 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
automata sequences; regular sequences; growth of arithmetic functions;
D O I
10.1017/S0004972714000197
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine a lower gap property for the growth of an unbounded Z-valued k-regular sequence. In particular, if f : N -> Z is an unbounded k-regular sequence, we show that there is a constant c > 0 such that vertical bar f (n)vertical bar > c log n infinitely often. We end our paper by answering a question of Borwein, Choi and Coons on the sums of completely multiplicative automatic functions.
引用
收藏
页码:195 / 203
页数:9
相关论文
共 12 条
[1]  
Allouche J.P., 2003, Automatic sequences: Theory, applications, generalizations
[2]   THE RING OF K-REGULAR SEQUENCES [J].
ALLOUCHE, JP ;
SHALLIT, J .
THEORETICAL COMPUTER SCIENCE, 1992, 98 (02) :163-197
[3]  
[Anonymous], 1972, Mathematical systems theory, DOI 10.1007/BF01706087
[4]  
[Anonymous], 1980, MONOGRAPHIES ENSEIGN
[5]   COMPLETELY MULTIPLICATIVE FUNCTIONS TAKING VALUES IN {-1,1} [J].
Borwein, Peter ;
Choi, Stephen K. K. ;
Coons, Michael .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (12) :6279-6291
[6]  
Cobham A., 1969, MATH SYST THEORY, V3, P186
[7]  
ERDOS P, 1985, LECT NOTES MATH, V1122, P74
[8]  
Erdos P., 1957, MICH MATH J, V4, P291, DOI DOI 10.1307/MMJ/1028997963
[9]  
Erdos P., 1983, MATH STAT APPL, VB, P1
[10]  
Gowers T., ERDOS DISCREPANCY PR