Equicontinuous Actions on Semi-Locally Connected and Local Dendrites

被引:0
作者
Haj Salem, Aymen [1 ]
机构
[1] Inst Super Gest Gabes, Gabes, Tunisia
关键词
Semi-locally connected space; Local dendrite; Dendrite; Group action; Equicontinuity;
D O I
10.1007/s12346-021-00477-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show a necessary and sufficient condition of equicontinuous semi-locally connected flow. Moreover, we give a sufficient condition of the existence of almost automorphic points, for general flow. We further study equicontinuous local dendrites flows with finitely generated group action. Consequently, we obtain a generalization of Morales's results in Morales (Topol Appl 198: 101-106, 2016) and Theorem of Su and Qin in Su and Qin (J Differ Equ 25: 1744-1754, 2019).
引用
收藏
页数:13
相关论文
共 27 条
[1]   ω-Limit sets for monotone local dendrite maps [J].
Abdelli, Hafedh .
CHAOS SOLITONS & FRACTALS, 2015, 71 :66-72
[2]   On recurrence in zero dimensional flows [J].
Auslander, J. ;
Glasner, E. ;
Weiss, B. .
FORUM MATHEMATICUM, 2007, 19 (01) :107-114
[3]  
Auslander J., 1988, Minimal Flows and their Extensions, Volume 153 of North-Holland Mathematics Studies
[4]   REFLECTIONS ON EQUICONTINUITY [J].
Auslander, Joseph ;
Greschonig, Gernot ;
Nagar, Anima .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (09) :3129-3137
[5]   TOPOLOGICAL DYNAMICS OF TRANSFORMATIONS INDUCED ON SPACE OF PROBABILITY MEASURES [J].
BAUER, W ;
SIGMUND, K .
MONATSHEFTE FUR MATHEMATIK, 1975, 79 (02) :81-92
[6]  
Beardon A., 1991, Complex Analytic Dynamical Systems, DOI [10.1007/978-1-4612-4422-6, DOI 10.1007/978-1-4612-4422-6]
[7]  
GHYS E, 2001, ENSEIGN MATH, V47, P329
[8]  
GLASNER E, 1992, P AM MATH SOC, V114, P269
[9]  
Gottschalk W. H., 1956, P AM MATH SOC, V7, P709, DOI [DOI 10.2307/2033378, 10.2307/2033378]
[10]  
Haj Salem A, 2020, RECURRENCE DENDRITE