An observer for an occluded reaction-diffusion system with spatially varying parameters

被引:3
|
作者
Kramer, Sean [1 ]
Bollt, Erik M. [2 ]
机构
[1] Norwich Univ, Dept Math, Northfield, VT 05663 USA
[2] Clarkson Univ, Dept Math, Potsdam, NY 13699 USA
关键词
INVARIANT-MANIFOLDS; COHERENT STRUCTURES; PLANKTON; MODEL; DYNAMICS; SYNCHRONIZATION; COMPLEXITY; BEHAVIOR; FISH;
D O I
10.1063/1.4977960
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spatially dependent parameters of a two-component chaotic reaction-diffusion partial differential equation (PDE) model describing ocean ecology are observed by sampling a single species. We estimate the model parameters and the other species in the system by autosynchronization, where quantities of interest are evolved according to misfit between model and observations, to only partially observed data. Our motivating example comes from oceanic ecology as viewed by remote sensing data, but where noisy occluded data are realized in the form of cloud cover. We demonstrate a method to learn a large-scale coupled synchronizing system that represents the spatiotemporal dynamics and apply a network approach to analyze manifold stability. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Boundary Observer Design for Coupled Reaction-Diffusion Systems with Spatially-Varying Reaction
    Camacho-Solorio, Leobardo
    Vazquez, Rafael
    Krstic, Miroslav
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 3159 - 3164
  • [2] Complex pattern formation in reaction-diffusion systems with spatially varying parameters
    Page, KM
    Maini, PK
    Monk, NAM
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 202 (1-2) : 95 - 115
  • [3] Observer design for time fractional reaction-diffusion systems with spatially varying coefficients and weighted spatial averages measurement
    Zhang, Yanxin
    Chen, Juan
    Zhuang, Bo
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (10) : 2121 - 2135
  • [4] Boundary control of coupled reaction-diffusion systems with spatially-varying reaction
    Vazquez, Rafael
    Krstic, Miroslav
    IFAC PAPERSONLINE, 2016, 49 (08): : 222 - 227
  • [5] Oscillatory reaction-diffusion equations with temporally varying parameters
    Webb, SD
    Sherratt, JA
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 39 (01) : 45 - 60
  • [6] Control synthesis of reaction-diffusion systems with varying parameters and varying delays
    Cao, Guoyan
    Grigoriadis, Karolos M.
    Liu, Puchen
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2021, 52 (16) : 3451 - 3465
  • [7] NEW EXACT SOLUTIONS OF SPATIALLY AND TEMPORALLY VARYING REACTION-DIFFUSION EQUATIONS
    Joshi, Nalini
    Morrison, Tegan
    ANALYSIS AND APPLICATIONS, 2008, 6 (04) : 371 - 381
  • [8] Long-term coexistence for a competitive system of spatially varying gradient reaction-diffusion equations
    Korobeinikov, Andrei
    Norbury, John
    Wake, Graeme C.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) : 93 - 103
  • [9] Compensation of Spatially Varying Input Delay in Distributed Control of Reaction-Diffusion PDEs
    Qi, Jie
    Krstic, Miroslav
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (09) : 4069 - 4083
  • [10] Control of An Unstable Reaction-Diffusion PDE with Spatially-Varying Input Delay
    Qi, Jie
    Krstic, Miroslav
    IFAC PAPERSONLINE, 2020, 53 (02): : 7599 - 7604