A hierarchical finite element method based on the partition of unity

被引:33
|
作者
Taylor, RL [1 ]
Zienkiewicz, OC
Onate, E
机构
[1] Univ Calif Berkeley, Dept Civil Engn, Berkeley, CA 94720 USA
[2] Univ Coll Swansea, Dept Civil Engn, Swansea SA2 8PP, W Glam, Wales
[3] Univ Politecn Catalunya, CIMNE, Barcelona, Spain
关键词
D O I
10.1016/S0045-7825(97)00182-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we consider the application of hierarchical functions to base approximations which are a partition of unity. The particular hierarchical functions used are added to base finite element interpolations which, for C-0 approximations, are a particular case of the partition of unity. We also show how the functions may be constructed to preserve the interpolation property of the base finite element functions. An application to linear elasticity is used to illustrate the properties and stability of the approximation.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 50 条
  • [31] A partition of unity finite element method for nonlinear transient diffusion problems in heterogeneous materials
    Malek, Mustapha
    Izem, Nouh
    Seaid, Mohammed
    Mohamed, M. Shadi
    Wakrim, Mohamed
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02):
  • [32] Robustness and dispersion analysis of the Partition of Unity Finite Element Method applied to the Helmholtz equation
    Hervella-Nieto, Luis
    Lopez-Perez, Paula M.
    Prieto, Andres
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (08) : 2426 - 2446
  • [33] Singularity enrichment for complete sliding contact using the partition of unity finite element method
    Giner, E.
    Sukumar, N.
    Fuenmayor, F. J.
    Vercher, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (09) : 1402 - 1418
  • [34] A partition of unity finite element method for nonlinear transient diffusion problems in heterogeneous materials
    Mustapha Malek
    Nouh Izem
    Mohammed Seaid
    M. Shadi Mohamed
    Mohamed Wakrim
    Computational and Applied Mathematics, 2019, 38
  • [35] Partition of Unity Finite Element Method applied to exterior problems with Perfectly Matched Layers
    Langlois, Christophe
    Chazot, Jean-Daniel
    Perrey-Debain, Emmanuel
    Nennig, Benoit
    ACTA ACUSTICA, 2020, 4 (04):
  • [36] A modal-based Partition of Unity Finite Element Method for elastic wave propagation problems in layered media
    Destuynder, P.
    Hervella-Nieto, L.
    Lopez-Perez, P. M.
    Orellana, J.
    Prieto, A.
    COMPUTERS & STRUCTURES, 2022, 265
  • [37] Embedding Enriched Partition of Unity Approximations in Finite Element Simulations
    Schweitzer, Marc Alexander
    Ziegenhagel, Albert
    MESHFREE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS VIII, 2017, 115 : 199 - 208
  • [38] An improved partition of unity finite element model for diffraction problems
    Ortiz, P
    Sanchez, E
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 50 (12) : 2727 - 2740
  • [39] A Novel "Finite Element-Meshfree" Triangular Element Based on Partition of Unity for Acoustic Propagation Problems
    Dang, Sina
    Wang, Gang
    Chai, Yingbin
    MATHEMATICS, 2023, 11 (11)
  • [40] Partition of Unity Finite Element Method for 2D Vibro-Acoustic Modeling
    Langlois, Christophe
    Chazot, Jean-Daniel
    Cheng, Li
    Perrey-Debain, Emmanuel
    JOURNAL OF THEORETICAL AND COMPUTATIONAL ACOUSTICS, 2021, 29 (04):