An estimation model for state of health of lithium-ion batteries using energy-based features

被引:38
|
作者
Cai, Li [1 ]
Lin, Jingdong [1 ]
Liao, Xiaoyong [1 ]
机构
[1] Chongqing Univ, Coll Automat, Chongqing 400044, Peoples R China
关键词
State of health; Lithium-ion batteries; Energy-based features; Gaussian progress regression; Incomplete discharging; GAUSSIAN PROCESS REGRESSION; USEFUL LIFE PREDICTION; NEURAL-NETWORK; CHARGE; PACKS; SOH;
D O I
10.1016/j.est.2021.103846
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion batteries are pervasive in the renewable-energy based market. A key but challenging issue is accurate state of health (SOH) estimation in battery health monitoring (BHM). The complete discharging curve of battery is rarely available in real world. The incomplete discharging operation affects the subsequent constant current (CC) charging process, which extremely limits many conventional aging features extracted from the complete cycle process. Therefore, under incomplete discharging, the energy-based features are extracted to realize accurate and reliable SOH estimation. The purpose is achieved by an improved Gaussian progress regression (GPR) model. First, the features extracted from direct measurement curves are considered as the inputs of degradation model. A multidimensional linear mean function and a novel covariance function are proposed to adapt the fluctuations. So as to realize accurate batteries SOH estimation. Additionally, several batteries from NASA dataset are applied for the verification of the proposed model from different initial health states. Results demonstrate that this model outperforms the counterparts with a mean RMSE of 0.97% in the testing set.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A charging-feature-based estimation model for state of health of lithium-ion batteries
    Cai, Li
    Lin, Jingdong
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [2] State of health estimation of lithium-ion batteries based on interval voltage features
    Li, Zuxin
    Zhang, Fengying
    Cai, Zhiduan
    Xu, Lihao
    Shen, Shengyu
    Yu, Ping
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [3] State of health estimation for lithium-ion battery based on energy features
    Gong, Dongliang
    Gao, Ying
    Kou, Yalin
    Wang, Yurang
    ENERGY, 2022, 257
  • [4] Estimation and Influencing Factor Analysis of Lithium-Ion Batteries State of Health Based on Features Extraction
    Gu J.
    Jiang L.
    Zhang X.
    Hua L.
    Cheng T.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2023, 38 (19): : 5330 - 5342
  • [5] A State of Health Estimation Framework for Lithium-Ion Batteries Using Transfer Components Analysis
    Jia, Bowen
    Guan, Yong
    Wu, Lifeng
    ENERGIES, 2019, 12 (13)
  • [6] State of health estimation of lithium-ion batteries using EIS measurement and transfer learning
    Li, Yichun
    Maleki, Mina
    Banitaan, Shadi
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [7] State-of-Health Estimation for Lithium-Ion Batteries Based on Wiener Process With Modeling the Relaxation Effect
    Xu, Xiaodong
    Yu, Chuanqiang
    Tang, Shengjin
    Sun, Xiaoyan
    Si, Xiaosheng
    Wu, Lifeng
    IEEE ACCESS, 2019, 7 : 105186 - 105201
  • [8] Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries
    Bao, Xinyuan
    Chen, Liping
    Lopes, Antonio M.
    Li, Xin
    Xie, Siqiang
    Li, Penghua
    Chen, YangQuan
    ENERGY, 2023, 278
  • [9] A novel ensemble learning model for state of health estimation of lithium-ion batteries
    Zeng, Chuxi
    Xu, Cheng
    Li, Haomiao
    Wang, Kangli
    JOURNAL OF POWER SOURCES, 2025, 638
  • [10] State of Health Estimation for Lithium-Ion Batteries
    Kong, XiangRong
    Bonakdarpour, Arman
    Wetton, Brian T.
    Wilkinson, David P.
    Gopaluni, Bhushan
    IFAC PAPERSONLINE, 2018, 51 (18): : 667 - 671