CELL NUCLEI DETECTION AND SEGMENTATION FOR COMPUTATIONAL PATHOLOGY USING DEEP LEARNING

被引:10
|
作者
Chen, Kemeng [1 ]
Zhang, Ning [1 ]
Powers, Linda [2 ]
Roveda, Janet [2 ]
机构
[1] Univ Arizona, Dept Elect & Comp Engn, 1230 E Speedway Blvd, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Elect & Comp Engn, Biomed Engn, BIO5 Inst, 1230 E Speedway Blvd, Tucson, AZ 85721 USA
来源
2019 SPRING SIMULATION CONFERENCE (SPRINGSIM) | 2019年
关键词
Nuclei; detection; segmentation; deep learning; image processing;
D O I
10.23919/springsim.2019.8732905
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents a deep learning model and image processing based processing flow to detect and segment nuclei from microscopy images. This work aims at isolating each nuclei by segmenting the boundary and detecting the geometric center of the nuclei. The deep learning model employs a multi-layer convolutional neural network based architecture to extract features from both spatial and color information and to generate a gray scaled image mask. Subsequent image processing steps smooth nuclei boundaries, isolate each individual nuclei and calculate the geometric center of the nuclei. The proposed work has been implemented and tested using H&E stained microscopy images containing seven different tissue samples. Experimental results demonstrated an average precision of 0.799, recall of 0.955, F-score of 0.86, and IoU of 0.835.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading
    Jimenez, Gabriel
    Racoceanu, Daniel
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (JUN)
  • [22] Segmentation, Detection and Classification of Cell Nuclei on Oral Cytology Samples Stained with Papanicolaou
    Matias, Andre Victoria
    Cerentini, Allan
    Buschetto Macarini, Luiz Antonio
    Atkinson Amorim, Joao Gustavo
    Daltoe, Felipe Perozzo
    von Wangenheim, Aldo
    2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020), 2020, : 53 - 58
  • [23] Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy ?
    Ali, Sharib
    Dmitrieva, Mariia
    Ghatwary, Noha
    Bano, Sophia
    Polat, Gorkem
    Temizel, Alptekin
    Krenzer, Adrian
    Hekalo, Amar
    Guo, Yun Bo
    Matuszewski, Bogdan
    Gridach, Mourad
    Voiculescu, Irina
    Yoganand, Vishnusai
    Chavan, Arnav
    Raj, Aryan
    Nguyen, Nhan T.
    Tran, Dat Q.
    Huynh, Le Duy
    Boutry, Nicolas
    Rezvy, Shahadate
    Chen, Haijian
    Choi, Yoon Ho
    Subramanian, Anand
    Balasubramanian, Velmurugan
    Gao, Xiaohong W.
    Hu, Hongyu
    Liao, Yusheng
    Stoyanov, Danail
    Daul, Christian
    Realdon, Stefano
    Cannizzaro, Renato
    Lamarque, Dominique
    Tran-Nguyen, Terry
    Bailey, Adam
    Braden, Barbara
    East, James E.
    Rittscher, Jens
    MEDICAL IMAGE ANALYSIS, 2021, 70 (70)
  • [24] Deep learning for cell image segmentation and ranking
    Araujo, Flavio H. D.
    Silva, Romuere R. V.
    Ushizima, Daniela M.
    Rezende, Mariana T.
    Carneiro, Claudia M.
    Campos Bianchi, Andrea G.
    Medeiros, Fatima N. S.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 72 : 13 - 21
  • [25] Lung parenchyma segmentation and nodule detection using deep learning
    G. S. Nandeesh
    M. Nagabushanam
    S. Pramodkumar
    S. Nandini
    Journal of Optics, 2024, 53 : 635 - 642
  • [26] Mitotic Nuclei Segmentation and Classification Using Chaotic Butterfly Optimization Algorithm with Deep Learning on Histopathology Images
    AlGhamdi, Rayed
    BIOMIMETICS, 2023, 8 (06)
  • [27] Lung parenchyma segmentation and nodule detection using deep learning
    Nandeesh, G. S.
    Nagabushanam, M.
    Pramodkumar, S.
    Nandini, S.
    JOURNAL OF OPTICS-INDIA, 2024, 53 (01): : 635 - 642
  • [28] Diabetic Retinopathy Detection using Deep Learning
    Nguyen, Quang H.
    Muthuraman, Ramasamy
    Singh, Laxman
    Sen, Gopa
    Anh Cuong Tran
    Nguyen, Binh P.
    Chua, Matthew
    ICMLSC 2020: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING, 2020, : 103 - 107
  • [29] Built to Last? Reproducibility and Reusability of Deep Learning Algorithms in Computational Pathology
    Wagner, Sophia J.
    Matek, Christian
    Boushehri, Sayedali Shetab
    Boxberg, Melanie
    Lamm, Lorenz
    Sada, Ario
    Winter, Dominik J. E.
    Marr, Carsten
    Peng, Tingying
    MODERN PATHOLOGY, 2024, 37 (01)
  • [30] Image Segmentation using Thresholding for Cell Nuclei Detection of Colon Tissue
    Nawandhar, Archana A.
    Yamujala, Lakshmi
    Kumar, Navin
    2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2015, : 1199 - 1203