Transport of aerosol to the Arctic: analysis of CALIOP and French aircraft data during the spring 2008 POLARCAT campaign

被引:26
作者
Ancellet, G. [1 ]
Pelon, J. [1 ]
Blanchard, Y. [1 ]
Quennehen, B. [1 ,2 ]
Bazureau, A. [1 ]
Law, K. S. [1 ]
Schwarzenboeck, A. [2 ]
机构
[1] Univ Versailles St Quentin, Univ Paris 04, UPMC, CNRS INSU,LATMOS, Paris, France
[2] Univ B Pascal, INSU CNRS, Lab Meterol Phys, Aubiere, France
关键词
CALIPSO LIDAR; CLOUD; POLLUTION; CALIBRATION; EMISSIVITY; RADIATION;
D O I
10.5194/acp-14-8235-2014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lidar and in situ observations performed during the Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, Climate, Chemistry, Aerosols and Transport (POLARCAT) campaign are reported here in terms of statistics to characterize aerosol properties over northern Europe using daily airborne measurements conducted between Svalbard and Scandinavia from 30 March to 11 April 2008. It is shown that during this period a rather large number of aerosol layers was observed in the troposphere, with a backscatter ratio at 532 nm of 1.2 (1.5 below 2 km, 1.2 between 5 and 7 km and a minimum in between). Their sources were identified using multispectral backscatter and depolarization airborne lidar measurements after careful calibration analysis. Transport analysis and comparisons between in situ and airborne lidar observations are also provided to assess the quality of this identification. Comparison with level 1 backscatter observations of the spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) were carried out to adjust CALIOP multispectral observations to airborne observations on a statistical basis. Recalibration for CALIOP daytime 1064 nm signals leads to a decrease of their values by about 30 %, possibly related to the use of the version 3.0 calibration procedure. No recalibration is made at 532 nm even though 532 nm scattering ratios appear to be biased low (-8 %) because there are also significant differences in air mass sampling between airborne and CALIOP observations. Recalibration of the 1064 nm signal or correction of -5% negative bias in the 532 nm signal both could improve the CALIOP aerosol colour ratio expected for this campaign. The first hypothesis was retained in this work. Regional analyses in the European Arctic performed as a test emphasize the potential of the CALIOP spaceborne lidar for further monitoring in-depth properties of the aerosol layers over Arctic using infrared and depolarization observations. The CALIOP April 2008 global distribution of the aerosol backscatter reveal two regions with large backscatter below 2 km: the northern Atlantic between Greenland and Norway, and northern Siberia. The aerosol colour ratio increases between the source regions and the observations at latitudes above 70 degrees N are consistent with a growth of the aerosol size once transported to the Arctic. The distribution of the aerosol optical properties in the mid-troposphere supports the known main transport pathways between the mid-latitudes and the Arctic.
引用
收藏
页码:8235 / 8254
页数:20
相关论文
共 45 条
[1]   Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project [J].
Brock, C. A. ;
Cozic, J. ;
Bahreini, R. ;
Froyd, K. D. ;
Middlebrook, A. M. ;
McComiskey, A. ;
Brioude, J. ;
Cooper, O. R. ;
Stohl, A. ;
Aikin, K. C. ;
de Gouw, J. A. ;
Fahey, D. W. ;
Ferrare, R. A. ;
Gao, R-S. ;
Gore, W. ;
Holloway, J. S. ;
Huebler, G. ;
Jefferson, A. ;
Lack, D. A. ;
Lance, S. ;
Moore, R. H. ;
Murphy, D. M. ;
Nenes, A. ;
Novelli, P. C. ;
Nowak, J. B. ;
Ogren, J. A. ;
Peischl, J. ;
Pierce, R. B. ;
Pilewskie, P. ;
Quinn, P. K. ;
Ryerson, T. B. ;
Schmidt, K. S. ;
Schwarz, J. P. ;
Sodemann, H. ;
Spackman, J. R. ;
Stark, H. ;
Thomson, D. S. ;
Thornberry, T. ;
Veres, P. ;
Watts, L. A. ;
Warneke, C. ;
Wollny, A. G. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (06) :2423-2453
[2]   Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples [J].
Burton, S. P. ;
Ferrare, R. A. ;
Hostetler, C. A. ;
Hair, J. W. ;
Rogers, R. R. ;
Obland, M. D. ;
Butler, C. F. ;
Cook, A. L. ;
Harper, D. B. ;
Froyd, K. D. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (01) :73-98
[3]   Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations [J].
Cattrall, C ;
Reagan, J ;
Thome, K ;
Dubovik, O .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D10) :1-13
[4]   From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar observations [J].
Ceccaldi, M. ;
Delanoe, J. ;
Hogan, R. J. ;
Pounder, N. L. ;
Protat, A. ;
Pelon, J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (14) :7962-7981
[5]   Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic [J].
de Villiers, R. A. ;
Ancellet, G. ;
Pelon, J. ;
Quennehen, B. ;
Schwarzenboeck, A. ;
Gayet, J. F. ;
Law, K. S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (11) :5011-5030
[6]   A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer [J].
Delanoe, Julien ;
Hogan, Robin J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D7)
[7]  
Devasthale A, 2011, TELLUS B, V63, P77, DOI 10.1111/j.1600-0889.2010.00516.x
[8]   Spatial and seasonal distribution of Arctic aerosols observed by the CALIOP satellite instrument (2006-2012) [J].
Di Pierro, M. ;
Jaegle, L. ;
Eloranta, E. W. ;
Sharma, S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (14) :7075-7095
[9]   Sensitivity of Thermal Infrared Radiation at the Top of the Atmosphere and the Surface to Ice Cloud Microphysics [J].
Dubuisson, Philippe ;
Giraud, Vincent ;
Pelon, Jacques ;
Cadet, Bertrand ;
Yang, Ping .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (10) :2545-2560
[10]   Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006 [J].
Freudenthaler, Volker ;
Esselborn, Michael ;
Wiegner, Matthias ;
Heese, Birgit ;
Tesche, Matthias ;
Ansmann, Albert ;
Mueller, Detlef ;
Althausen, Dietrich ;
Wirth, Martin ;
Fix, Andreas ;
Ehret, Gerhard ;
Knippertz, Peter ;
Toledano, Carlos ;
Gasteiger, Josef ;
Garhammer, Markus ;
Seefeldner, Andmeinhard .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2009, 61 (01) :165-179