The Gauss map of minimal surfaces in Berger spheres

被引:2
|
作者
de Lira, Jorge H. S. [1 ]
Hinojosa, Jorge A. [2 ]
机构
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
[2] Univ Fed Rural Pernambuco, BR-52171900 Recife, PE, Brazil
关键词
Berger spheres; Minimal surfaces; Harmonic maps; MEAN-CURVATURE SURFACES; HARMONIC MAPS; TORI;
D O I
10.1007/s10455-009-9178-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that a pair of spinors satisfying a Dirac type equation represents surfaces immersed in Berger spheres with prescribed mean curvature. Using this, we prove that the Gauss map of a minimal surface immersed in a Berger sphere is harmonic. Conversely, we exhibit a representation of minimal surfaces in Berger spheres in terms of a given harmonic map. The examples we constructed appear in associated families.
引用
收藏
页码:143 / 162
页数:20
相关论文
共 50 条