Bifurcation at infinity for equations in spaces of vector-valued functions

被引:6
作者
Diamond, P
Kloeden, PE
Krasnoselskii, AM
Pokrovskii, AV
机构
[1] RUSSIAN ACAD SCI,INST INFORMAT TRANSMISS PROBLEMS,MOSCOW 101447,RUSSIA
[2] DEAKIN UNIV,CADSEM,GEELONG,VIC 3217,AUSTRALIA
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 1997年 / 63卷
关键词
D O I
10.1017/S1446788700000689
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New existence conditions, under which an index at infinity can be calculated, are given for bifurcations at infinity of asymptotically linear equations in spaces of vector-valued functions. The case where a bounded nonlinearity has discontinuous principal homogeneous part is considered. The results are applied to 2 pi-periodic problems for two-dimensional systems of ordinary differential equations and to a vector two-point boundary value problem.
引用
收藏
页码:263 / 280
页数:18
相关论文
共 13 条
  • [1] [Anonymous], 1994, APPROXIMATION PROCED
  • [2] [Anonymous], AGE BIFURCATION UNDE
  • [3] Fucik S., 1980, SOLVABILITY NONLINEA
  • [4] Krasnosel'skii M.A, 1989, SYSTEMS HYSTERESIS, DOI DOI 10.1007/978-3-642-61302-9
  • [5] ON BIFURCATION POINTS OF EQUATIONS WITH LANDESMAN LAZER TYPE NONLINEARITIES
    KRASNOSELSKII, AM
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (12) : 1187 - 1199
  • [6] KRASNOSELSKII AM, IN PRESS DIFFERENTSI
  • [7] KRASNOSELSKII AM, 1966, PLANE VECTOR FIELDS
  • [8] KRASNOSELSKII AM, 1995, IN PRESS P INT C IND
  • [9] Krasnoselskii M. A., 1984, GEOMETRICAL METHODS
  • [10] LANDESMAN EM, 1970, J MATH MECH, V19, P609