Mirror symmetric on-chip frequency circulation of light

被引:31
作者
Herrmann, Jason F. [1 ,2 ]
Ansari, Vahid [1 ,2 ]
Wang, Jiahui [1 ,2 ]
Witmer, Jeremy D. [1 ,2 ]
Fan, Shanhui [1 ,3 ]
Safavi-Naeini, Amir H. [1 ,2 ]
机构
[1] Stanford Univ, Ginzton Lab, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
LITHIUM-NIOBATE; OPTICAL ISOLATION; ISOLATORS;
D O I
10.1038/s41566-022-01026-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Researchers demonstrate an integrated mirror-symmetric non-reciprocal device enabled by three coupled photonic resonators. Nearly 40 dB of isolation is achieved at telecommunications wavelengths using 75 mW of radiofrequency power. Integrated circulators and isolators are important for developing on-chip optical technologies such as laser cavities, communication systems and quantum information processors. These devices seem to inherently require mirror symmetry breaking to separate backwards from forwards propagation, and thus existing implementations rely on magnetic materials or interactions driven by propagating waves. By contrast to past works, we exhibit a mirror-symmetric non-reciprocal device that comprises three coupled photonic resonators implemented in thin-film lithium niobate. Applying radiofrequency modulation, we drive conversion between the frequency eigenmodes of this system. We measure nearly 40 dB of isolation for approximately 75 mW of radiofrequency power near 1,550 nm. We simultaneously generate non-reciprocal conversion between all of the eigenmodes to demonstrate circulation. Mirror-symmetric circulation simplifies the fabrication and operation of non-reciprocal integrated devices. Finally, we consider applications of such on-chip isolators and circulators, such as full-duplex isolation within a single waveguide.
引用
收藏
页码:603 / +
页数:7
相关论文
共 31 条
[1]   On-chip optical isolation in monolithically integrated non-reciprocal optical resonators [J].
Bi, Lei ;
Hu, Juejun ;
Jiang, Peng ;
Kim, Dong Hun ;
Dionne, Gerald F. ;
Kimerling, Lionel C. ;
Ross, C. A. .
NATURE PHOTONICS, 2011, 5 (12) :758-762
[2]   Optical isolator using two tandem phase modulators [J].
Doerr, Christopher R. ;
Dupuis, Nicolas ;
Zhang, Liming .
OPTICS LETTERS, 2011, 36 (21) :4293-4295
[3]   Brillouin-scattering-induced transparency and non-reciprocal light storage [J].
Dong, Chun-Hua ;
Shen, Zhen ;
Zou, Chang-Ling ;
Zhang, Yan-Lei ;
Fu, Wei ;
Guo, Guang-Can .
NATURE COMMUNICATIONS, 2015, 6
[4]   Optical isolation using microring modulators [J].
Dostart, Nathan ;
Gevorgyan, Hayk ;
Onural, Deniz ;
Popovic, Milos A. .
OPTICS LETTERS, 2021, 46 (03) :460-463
[5]   Photonic Aharonov-Bohm Effect Based on Dynamic Modulation [J].
Fang, Kejie ;
Yu, Zongfu ;
Fan, Shanhui .
PHYSICAL REVIEW LETTERS, 2012, 108 (15)
[6]   Optomechanically induced non-reciprocity in microring resonators [J].
Hafezi, Mohammad ;
Rabl, Peter .
OPTICS EXPRESS, 2012, 20 (07) :7672-7684
[7]   Electrically Driven and Thermally Tunable Integrated Optical Isolators for Silicon Photonics [J].
Huang, Duanni ;
Pintus, Paolo ;
Zhang, Chong ;
Shoji, Yuya ;
Mizumoto, Tetsuya ;
Bowers, John E. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2016, 22 (06) :271-278
[8]   Fast response of photorefraction in lithium niobate microresonators [J].
Jiang, Haowei ;
Luo, Rui ;
Liang, Hanxiao ;
Chen, Xianfeng ;
Chen, Yuping ;
Lin, Qiang .
OPTICS LETTERS, 2017, 42 (17) :3267-3270
[9]   Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency [J].
Jiang, Wentao ;
Sarabalis, Christopher J. ;
Dahmani, Yanni D. ;
Patel, Rishi N. ;
Mayor, Felix M. ;
McKenna, Timothy P. ;
Van Laer, Raphael ;
Safavi-Naeini, Amir H. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]  
Kang MS, 2011, NAT PHOTONICS, V5, P549, DOI [10.1038/nphoton.2011.180, 10.1038/NPHOTON.2011.180]