ACR-3, a Caenorhabditis elegans nicotinic acetylcholine receptor subunit - Molecular cloning and functional expression

被引:0
作者
Baylis, HA
Matsuda, K
Squire, MD
Fleming, JT
Harvey, RJ
Darlison, MG
Barnard, EA
Sattelle, DB
机构
[1] Univ Cambridge, Dept Zool, Babraham Inst, Mol Signalling Lab, Cambridge CB2 3EJ, England
[2] Univ Hamburg, Hosp Eppendorf, Inst Zellbiochem & Klin Neurobiol, D-20246 Hamburg, Germany
[3] Royal Free Hosp, Sch Med, Div Basic Med Sci, Mol Neurobiol Unit, London NW3 2PF, England
关键词
nicotinic acetylcholine receptor; Caenorhabditis elegans; acr-3; gene; transient expression; Xenopus oocytes; ligand-gated ion channel;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular cloning and functional co-expression of a novel nicotinic acetylcholine receptor (nAChR) non-alpha subunit gene, acr-3, is described. Previously we determined the sequence and demonstrated the functional co-expression of acr-2, a nAChR non-alpha subunit gene from Caenorhabditis elegans. Analysis of the acr-2 genomic DNA revealed the existence of another potential nAChR subunit gene, acr-3, in the same orientation, only 281bp downstream of acr-2. A cDNA containing the entire acr-3 coding sequence was isolated by RT-PCR and sequenced. The predicted protein contains the conserved features typical of nAChR non-alpha subunits and most closely resembles other invertebrate nAChR non-alpha polypeptides, Unusually, the highly conserved glycine residue (equivalent to residue 240 in the Torpedo alpha subunit) upstream of transmembrane domain 2 (m(2)) is replaced by a serine residue in ACR-3. When acr-3 cDNA was injected alone into Xenopus oocytes no levamisole-gated channel activity was observed. However when co-expressed with a C. elegans alpha subunit (UNC-38), ACR-3 contributed to the formation of levamisole-gated channels. The response of this hetero-oligomer to levamisole (100 mu M) was reduced by the nAChR antagonists mecamylamine(1 mu M) and d-tubocurarine (10 mu M).
引用
收藏
页码:149 / 158
页数:10
相关论文
共 38 条
[11]  
Colquhoun Lorna M., 1993, Molecular Neuropharmacology, V3, P11
[12]  
COUTURIER S, 1990, J BIOL CHEM, V265, P17560
[13]   A COMPREHENSIVE SET OF SEQUENCE-ANALYSIS PROGRAMS FOR THE VAX [J].
DEVEREUX, J ;
HAEBERLI, P ;
SMITHIES, O .
NUCLEIC ACIDS RESEARCH, 1984, 12 (01) :387-395
[14]  
Fleming JT, 1997, J NEUROSCI, V17, P5843
[15]   Molecular cloning and in vitro expression of C-elegans and parasitic nematode ionotropic receptors [J].
Fleming, JT ;
Baylis, HA ;
Sattelle, DB ;
Lewis, JA .
PARASITOLOGY, 1996, 113 :S175-S190
[16]  
FLEMING JT, 1993, COMP MOL NEUROBIOLOG, P65
[17]   NEURONAL NICOTINIC RECEPTORS - MOLECULAR-ORGANIZATION AND REGULATIONS [J].
GALZI, JL ;
CHANGEUX, JP .
NEUROPHARMACOLOGY, 1995, 34 (06) :563-582
[18]   MODE OF ACTION OF THE ANTHELMINTICS MORANTEL, PYRANTEL AND LEVAMISOLE ON MUSCLE-CELL MEMBRANE OF THE NEMATODE ASCARIS-SUUM [J].
HARROW, ID ;
GRATION, KAF .
PESTICIDE SCIENCE, 1985, 16 (06) :662-672
[19]   PRIMARY STRUCTURE OF A DEVELOPMENTALLY REGULATED NICOTINIC ACETYLCHOLINE-RECEPTOR PROTEIN FROM DROSOPHILA [J].
HERMANSBORGMEYER, I ;
ZOPF, D ;
RYSECK, RP ;
HOVEMANN, B ;
BETZ, H ;
GUNDELFINGER, ED .
EMBO JOURNAL, 1986, 5 (07) :1503-1508
[20]  
Karlin A, 1993, Curr Opin Neurobiol, V3, P299, DOI 10.1016/0959-4388(93)90121-E