Pitch angle transport of electrons due to cyclotron interactions with the coherent chorus subelements

被引:53
作者
Lakhina, G. S. [1 ]
Tsurutani, B. T. [2 ]
Verkhoglyadova, O. P. [2 ]
Pickett, J. S. [3 ]
机构
[1] Indian Inst Geomagnetism, Navi Mumbai 410218, India
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91190 USA
[3] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
关键词
WHISTLER-MODE CHORUS; WAVE-PARTICLE INTERACTIONS; AURORAL-ZONE; RADIATION BELT; VLF EMISSIONS; ACCELERATION; MAGNETOSPHERE; FREQUENCY; MICROBURSTS; FLUXES;
D O I
10.1029/2009JA014885
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Chorus is a right-hand, circularly-polarized electromagnetic plane wave. Dayside chorus is a bursty emission composed of rising frequency "elements" with duration of similar to 0.1 to 1.0 s. Each element is composed of coherent subelements with durations of similar to 1 to 100 ms or more. Due to the coherent nature of the chorus subelements/wave packets, energetic electrons with pitch angles near the loss cone may stay in resonance with the waves for more than one wave cycle. The electrons could therefore be "transported" in pitch across a relatively large angle from a single wave-particle interaction. Here we study the cyclotron resonance of the energetic electron with the coherent chorus subelements. We consider a Gaussian distribution for the time duration of the chorus subelements and derive an expression for the pitch angle transport due to this interaction. For typical chorus subelement parameters, the average pitch angle diffusion coefficients similar to(0.5-8.5)s(-1) are found. Such rapid pitch angle scattering may provide an explanation for the ionospheric microbursts of similar to 0.1 to 0.5 s in bremsstrahlung x-rays formed by similar to 10-100 keV precipitating electrons. The model is applicable to the cases when R = t(tr)/Delta t = [(omega + Omega/2) t(tr)/omega T] > 1 and inhomogeneity factor S = t(tr)(2) /t(inh)(2) < 1, where Omega is the electron cyclotron frequency in the ambient magnetic field, B-0, w is the frequency of chorus, ttr is the trapping time (or phase oscillation period), t(inh) is the time for the passage through the resonance in the inhomogeneous magnetic field, and t(tr) is the duration of the chorus subelement. For the typical parameters at L = 5, the energetic electrons having pitch angles of alpha <= pi/3 can satisfy both the condition R > 1 and S < 1 for a range of chorus wave amplitudes.
引用
收藏
页数:7
相关论文
共 65 条
[1]   Nonlinear interaction of outer zone electrons with VLF waves [J].
Albert, JM .
GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (08) :116-1
[2]   Evaluation of quasi-linear diffusion coefficients for whistler mode waves in a plasma with arbitrary density ratio [J].
Albert, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2005, 110 (A3)
[3]   Comparison of pitch angle diffusion by turbulent and monochromatic whistler waves [J].
Albert, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A5) :8477-8482
[4]   BALLOON OBSERVATIONS OF X RAYS IN AURORAL ZONE .3. HIGH TIME RESOLUTION STUDIES [J].
ANDERSON, KA ;
MILTON, DW .
JOURNAL OF GEOPHYSICAL RESEARCH, 1964, 69 (21) :4457-+
[5]   VLF EMISSIONS ASSOCIATED WITH ENHANCED MAGNETOSPHERIC ELECTRONS [J].
ANDERSON, RR ;
MAEDA, K .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1977, 82 (01) :135-146
[6]   A first approach to model the low-frequency wave activity in the plasmasphere [J].
André, R ;
Lefeuvre, F ;
Simonet, F ;
Inan, US .
ANNALES GEOPHYSICAE, 2002, 20 (07) :981-996
[7]   Source regions of banded chorus [J].
Bell, T. F. ;
Inan, U. S. ;
Haque, N. ;
Pickett, J. S. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[8]   Landau damping and resultant unidirectional propagation of chorus waves [J].
Bortnik, J ;
Inan, US ;
Bell, TF .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (03)
[9]   Nonlinear interaction of energetic electrons with large amplitude chorus [J].
Bortnik, J. ;
Thorne, R. M. ;
Inan, U. S. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (21)
[10]   MAGNETOSPHERIC CHORUS - OCCURRENCE PATTERNS AND NORMALIZED FREQUENCY [J].
BURTIS, WJ ;
HELLIWELL, RA .
PLANETARY AND SPACE SCIENCE, 1976, 24 (11) :1007-&