Dispersionless hierarchies, Hamilton-Jacobi theory and twister correspondences

被引:7
作者
Guha, P
Takasaki, K [1 ]
机构
[1] Kyoto Univ, Dept Fundamental Sci, Sakyo Ku, Kyoto 606, Japan
[2] Kyoto Univ, Math Sci Res Inst, Sakyo Ku, Kyoto 606, Japan
关键词
hierarchies; Hamilton-Jacobi theory; twisters correspondences;
D O I
10.1016/S0393-0440(97)00034-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dispersionless KP and Toda hierarchies possess an underlying twistorial structure. A twistorial approach is partly implemented by the method of Riemann-Hilbert problem. This is however still short of clarifying geometric ingredients of twister theory such as twister lines and twister surfaces. A more geometric approach can be developed in a Hamilten-Jacobi formalism of Gibbons and Kodama. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:326 / 340
页数:15
相关论文
共 29 条
[1]   AN INFINITE HIERARCHY OF CONSERVATION-LAWS AND NONLINEAR SUPERPOSITION PRINCIPLES FOR SELF-DUAL EINSTEIN-SPACES [J].
BOYER, CP ;
PLEBANSKI, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (02) :229-234
[2]   REMARKS ON DISPERSIONLESS KP, KDV, AND 2D GRAVITY [J].
CARROLL, R .
JOURNAL OF NONLINEAR SCIENCE, 1994, 4 (06) :519-544
[3]  
DUBROVIN B, 1994, GEOMETRY 2D TOPOLOGI
[4]   HAMILTONIAN-FORMALISM OF WHITHAM-TYPE HIERARCHIES AND TOPOLOGICAL LANDAU-GINSBURG MODELS [J].
DUBROVIN, BA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (01) :195-207
[5]  
GIBBONS J, 1994, NATO ADV SCI INST SE, V320, P61
[6]  
GINDIKIN SG, 1982, LECT NOTES MATH, V970, P2
[7]  
HITCHIN N, 1996, LECT FROBENIUS MANIF
[8]  
HITCHIN NJ, 1982, LECT NOTES MATH, V970, P73
[9]   MINITWISTOR SPACES AND EINSTEIN-WEYL SPACES [J].
JONES, PE ;
TOD, KP .
CLASSICAL AND QUANTUM GRAVITY, 1985, 2 (04) :565-577
[10]   A METHOD FOR SOLVING THE DISPERSIONLESS KP HIERARCHY AND ITS EXACT-SOLUTIONS .2. [J].
KODAMA, Y ;
GIBBONS, J .
PHYSICS LETTERS A, 1989, 135 (03) :167-170