NONLINEAR BACKWARD STOCHASTIC EVOLUTIONARY EQUATIONS DRIVEN BY A SPACE-TIME WHITE NOISE

被引:0
|
作者
Hu, Ying [1 ,2 ]
Tang, Shanjian [3 ]
机构
[1] Univ Rennes 1, Inst Rech Mathemat Rennes, F-35042 Rennes, France
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Sch Math Sci, Dept Finance & Control Sci, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
Backward stochastic evolutionary equation; space-time white noise; well solvability; a priori estimate; dual argument; PARTIAL-DIFFERENTIAL-EQUATIONS; MAXIMUM PRINCIPLE; SYSTEMS;
D O I
10.3934/mcrf.2018032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well solvability of nonlinear backward stochastic evolutionary equations driven by a space-time white noise. We first establish a novel a priori estimate for solution of linear backward stochastic evolutionary equations, and then give an existence and uniqueness result for nonlinear backward stochastic evolutionary equations. A dual argument plays a crucial role in the proof of these results. Finally, an example is given to illustrate the existence and uniqueness result.
引用
收藏
页码:739 / 751
页数:13
相关论文
共 50 条