Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

被引:27
|
作者
Gu, Shu-Ying [1 ,2 ]
Jin, Sheng-Peng [1 ]
Gao, Xie-Feng [1 ]
Mu, Jian [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China
[2] Tongji Univ, Key Lab Adv Civil Engn Mat, Minist Educ, Shanghai 201804, Peoples R China
关键词
shape memory polymers; polyurethanes; magnetic responsiveness; nanocomposites; IRON-OXIDE NANOPARTICLES; POLYMER NETWORKS; ELECTROMAGNETIC ACTIVATION; FE3O4; NANOPARTICLES; COPOLYMER; PERFORMANCE;
D O I
10.1088/0964-1726/25/5/055036
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a. polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for. nanocomposites with low Fe3O4 loading content. A small. agglomeration was observed for. nanocomposites with 6 wt% and 9 wt% loading content, leading to a small. decline in the. mechanical properties. PLAU and its nanocomposites have glass transition around 52 degrees C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also. exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an. increase in. the loading content of Fe3O4 nanoparticles due to an. improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and. have potential application. in biomedical areas such as intravascular stent.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Synthesis and properties of magnetic sensitive shape memory Fe3O4/poly(e-caprolactone)-polyurethane nanocomposites
    Cai, Yan
    Jiang, Ji-Sen
    Zheng, Bing
    Xie, Mei-Ran
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 127 (01) : 49 - 56
  • [2] Hyperbranched polyurethane/Fe3O4 thermosetting nanocomposites as shape memory materials
    Kalita, Hemjyoti
    Karak, Niranjan
    POLYMER BULLETIN, 2013, 70 (11) : 2953 - 2965
  • [3] Hyperbranched polyurethane/Fe3O4 thermosetting nanocomposites as shape memory materials
    Hemjyoti Kalita
    Niranjan Karak
    Polymer Bulletin, 2013, 70 : 2953 - 2965
  • [4] Polylactide-based thermoplastic shape memory polymer nanocomposites
    Yan, Beibei
    Gu, Shuying
    Zhang, Yihan
    EUROPEAN POLYMER JOURNAL, 2013, 49 (02) : 366 - 378
  • [5] Preparation of novel hydrophobic magnetic Fe3O4/waterborne polyurethane nanocomposites
    Yang, Lei
    Fu, Qi
    Fu, Heqing
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (15)
  • [6] Biodegradable magnetic-sensitive shape memory poly(ε-caprolactone)/Fe3O4 nanocomposites
    Gao, Yuliang
    Zhu, Guangming
    Xu, Shuogui
    Ma, Tuotuo
    Nie, Jing
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (01)
  • [7] Shape-Memory Polyurethane Nanocomposites with Single Layer or Bilayer Oleic Acid-Coated Fe3O4 Nanoparticles
    Zou, Hua
    Weder, Christoph
    Simon, Yoan C.
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2015, 300 (09) : 885 - 892
  • [8] Characterization of Magnetic Fluorescence Fe3O4/CdSe Nanocomposites
    Du, Guihuan
    Liu, Zuli
    Wang, Dong
    Xia, Xing
    Jia, Lihui
    Yao, Kailun
    Chu, Qian
    Zhang, Suming
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (02) : 1304 - 1307
  • [9] Influence of Ag on the Magnetic Anisotropy of Fe3O4 Nanocomposites
    Batista de Jesus, Ana Carla
    Santos Barbosa, Cristiane Cupertino
    Peixoto, Erilaine Barreto
    de Jesus, Jonathas Rafael
    da Silva Filho, Jorge Luiz
    Fabian, Fernanda Antunes
    Costa, Ivani Meneses
    dos Santos Duque, Jose Gerivaldo
    de Meneses, Cristiano Teles
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2019, 32 (08) : 2471 - 2477
  • [10] Nanocomposites of polyhydroxyurethane with Fe3O4 nanoparticles: Synthesis, shape memory and photothermal properties
    Saeed, Muhammad Usman
    Hang, Guohua
    Hu, Jiawei
    Gao, Yuan
    Li, Lei
    Zhang, Tao
    Zheng, Sixun
    POLYMER ENGINEERING AND SCIENCE, 2024, 64 (09) : 4258 - 4270