Elliptic curves with isomorphic groups of points over finite field extensions

被引:4
作者
Heuberger, Clemens [1 ]
Mazzoli, Michela [1 ]
机构
[1] Alpen Adria Univ Klagenfurt, Klagenfurt, Austria
基金
奥地利科学基金会;
关键词
Elliptic curve; Rational points; Finite field; Field extension; Isomorphism; Isogeny; Valuation;
D O I
10.1016/j.jnt.2017.05.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a pair of ordinary elliptic curves E and E' defined over the same finite field F-q. Suppose they have the same number of F-q-rational points, i.e. vertical bar E(F-q)vertical bar = vertical bar E'(F-q)vertical bar. In this paper we characterise for which finite field extensions F(q)k k >= 1 (if any) the corresponding groups of F(q)k-rational points are isomorphic, i.e. E(F(q)k) congruent to (F(q)k). (C) 2017 The Author(s). Published by Elsevier Inc.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 3 条
[1]  
Tate J., 1966, INVENT MATH, V2, P131
[2]  
Waterhouse WC., 1969, ANN SCI ECOLE NORM S, V2, P521, DOI 10.24033/asens.1183
[3]   Group structure of elliptic curves over finite fields [J].
Wittmann, C .
JOURNAL OF NUMBER THEORY, 2001, 88 (02) :335-344