Fractal photonic topological insulators

被引:81
作者
Biesenthal, Tobias [1 ]
Maczewsky, Lukas J. [1 ]
Yang, Zhaoju [2 ]
Kremer, Mark [1 ]
Segev, Mordechai [3 ,4 ]
Szameit, Alexander [1 ]
Heinrich, Matthias [1 ]
机构
[1] Univ Rostock, Inst Phys, Albert Einstein Str 23, D-18059 Rostock, Germany
[2] Zhejiang Univ, Interdisciplinary Ctr Quantum Informat, Dept Phys, Zhejiang Prov Key Lab Quantum Technol & Device, Hangzhou 310027, Zhejiang, Peoples R China
[3] Technion Israel Inst Technol, Phys Dept, Elect Engn Dept, IL-32000 Haifa, Israel
[4] Technion Israel Inst Technol, Solid State Inst, IL-32000 Haifa, Israel
基金
美国国家科学基金会;
关键词
SELF-SIMILARITY; EDGE STATES; PULSES; PROPAGATION; DYNAMICS;
D O I
10.1126/science.abm2842
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological insulators constitute a newly characterized state of matter that contains scatter-free edge states surrounding an insulating bulk. Conventional wisdom regards the insulating bulk as essential, because the invariants that describe the topological properties of the system are defined therein. Here, we study fractal topological insulators based on exact fractals composed exclusively of edge sites. We present experimental proof that, despite the lack of bulk bands, photonic lattices of helical waveguides support topologically protected chiral edge states. We show that light transport in our topological fractal system features increased velocities compared with the corresponding honeycomb lattice. By going beyond the confines of the bulk- boundary correspondence, our findings pave the way toward an expanded perception of topological insulators and open a new chapter of topological fractals.
引用
收藏
页码:1114 / +
页数:28
相关论文
共 57 条
  • [1] UNIVERSALITY IN THE DYNAMICS OF PHASE GRATING FORMATION IN OPTICAL FIBERS
    AN, S
    SIPE, JE
    [J]. OPTICS LETTERS, 1991, 16 (19) : 1478 - 1480
  • [2] Bak P., 1994, FRACTALS SCI
  • [3] ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS
    BENZI, R
    PALADIN, G
    PARISI, G
    VULPIANI, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18): : 3521 - 3531
  • [4] DIFFRACTALS
    BERRY, MV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (06): : 781 - 797
  • [5] Biesenthal T, 2022, ROSDOK, DOI [10.18453/rosdok_id00003634, DOI 10.18453/ROSDOK_ID00003634]
  • [6] Biesenthal T., 2022, ROSDOK, DOI [10.18453/rosdokid00003634, DOI 10.18453/ROSDOKID00003634]
  • [7] Transport properties of continuous-time quantum walks on Sierpinski fractals
    Darazs, Zoltan
    Anishchenko, Anastasiia
    Kiss, Tamas
    Blumen, Alexander
    Muelken, Oliver
    [J]. PHYSICAL REVIEW E, 2014, 90 (03):
  • [8] ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS
    ECKMANN, JP
    RUELLE, D
    [J]. REVIEWS OF MODERN PHYSICS, 1985, 57 (03) : 617 - 656
  • [9] Self-similar propagation and amplification of parabolic pulses in optical fibers
    Fermann, ME
    Kruglov, VI
    Thomsen, BC
    Dudley, JM
    Harvey, JD
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (26) : 6010 - 6013
  • [10] Wave and defect dynamics in nonlinear photonic quasicrystals
    Freedman, B
    Bartal, G
    Segev, M
    Lifshitz, R
    Christodoulides, DN
    Fleischer, JW
    [J]. NATURE, 2006, 440 (7088) : 1166 - 1169