Does regulation of skeletal muscle function involve circulating microRNAs?

被引:53
作者
Aoi, Wataru [1 ]
Sakuma, Kunihiro [2 ]
机构
[1] Kyoto Prefectural Univ, Grad Sch Life & Environm Sci, Lab Hlth Sci, Kyoto 6068522, Japan
[2] Toyohashi Univ Technol, Hlth Sci Ctr, Toyohashi, Aichi, Japan
关键词
microRNA; skeletal muscle; circulation; exosome; exercise; muscular disease; POTENTIAL-DIAGNOSTIC-MARKER; ACUTE ENDURANCE EXERCISE; SERUM CREATINE-KINASE; AEROBIC EXERCISE; MESSENGER-RNAS; MYOMIR NETWORK; EXPRESSION; BIOMARKERS; GENE; BIOGENESIS;
D O I
10.3389/fphys.2014.00039
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation. Recently, growing evidence has shown that miRNAs are taken in by intracellular exosomes, secreted into circulation, and taken up by other cells. Circulating levels of several miRNAs are changed in diseases such as cancer, diabetes, and cardiovascular diseases; therefore, they are suggested to regulate functions of the recipient cells by modulating protein expression. Circulating miRNAs (c-miRNAs) may also modulate skeletal muscle function in physiological and pathological conditions. It has been suggested that acute and chronic exercise transiently or adaptively changes the level of c-miRNAs, thus post-transcriptionally regulating proteins associated with energy metabolism, myogenesis, and angiogenesis. Circulating levels of several miRNAs that are enriched in muscle are altered in muscle disorders and may be involved in their development and progression. In addition, such c-miRNAs may be useful as biomarkers to determine various interactions between tissues and also to reflect athletic performance, physical fatigue, incidence risk, and development of diseases.
引用
收藏
页数:8
相关论文
共 81 条
[1]   Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer [J].
Agaoglu, Fulya Yaman ;
Kovancilar, Muge ;
Dizdar, Yavuz ;
Darendeliler, Emin ;
Holdenrieder, Stefan ;
Dalay, Nejat ;
Gezer, Ugur .
TUMOR BIOLOGY, 2011, 32 (03) :583-588
[2]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[3]   Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men [J].
Aoi, Wataru ;
Ichikawa, Hiroyuki ;
Mune, Keitaro ;
Tanimura, Yuko ;
Mizushima, Katsura ;
Naito, Yuji ;
Yoshikawa, Toshikazu .
FRONTIERS IN PHYSIOLOGY, 2013, 4
[4]   The microRNA miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity [J].
Aoi, Wataru ;
Naito, Yuji ;
Mizushima, Katsura ;
Takanami, Yoshikazu ;
Kawai, Yukari ;
Ichikawa, Hiroshi ;
Yoshikawa, Toshikazu .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2010, 298 (04) :E799-E806
[5]   Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma [J].
Arroyo, Jason D. ;
Chevillet, John R. ;
Kroh, Evan M. ;
Ruf, Ingrid K. ;
Pritchard, Colin C. ;
Gibson, Donald F. ;
Mitchell, Patrick S. ;
Bennett, Christopher F. ;
Pogosova-Agadjanyan, Era L. ;
Stirewalt, Derek L. ;
Tait, Jonathan F. ;
Tewari, Muneesh .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (12) :5003-5008
[6]   MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer [J].
Asangani, I. A. ;
Rasheed, S. A. K. ;
Nikolova, D. A. ;
Leupold, J. H. ;
Colburn, N. H. ;
Post, S. ;
Allgayer, H. .
ONCOGENE, 2008, 27 (15) :2128-2136
[7]   Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training [J].
Baggish, Aaron L. ;
Hale, Andrew ;
Weiner, Rory B. ;
Lewis, Gregory D. ;
Systrom, David ;
Wang, Francis ;
Wang, Thomas J. ;
Chan, Stephen Y. .
JOURNAL OF PHYSIOLOGY-LONDON, 2011, 589 (16) :3983-3994
[8]   Changes in circulating microRNAs levels with exercise modality [J].
Banzet, Sebastien ;
Chennaoui, Mounir ;
Girard, Olivier ;
Racinais, Sebastien ;
Drogou, Catherine ;
Chalabi, Hakim ;
Koulmann, Nathalie .
JOURNAL OF APPLIED PHYSIOLOGY, 2013, 115 (09) :1237-1244
[9]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[10]   Uncoupling of Expression of an Intronic MicroRNA and Its Myosin Host Gene by Exon Skipping [J].
Bell, Matthew L. ;
Buvoli, Massimo ;
Leinwand, Leslie A. .
MOLECULAR AND CELLULAR BIOLOGY, 2010, 30 (08) :1937-1945