Cyclic CNN: Image Classification With Multiscale and Multilocation Contexts

被引:12
作者
Chen, Xin [1 ]
Xie, Lingxi [2 ]
Wu, Jun [3 ]
Tian, Qi [2 ]
机构
[1] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China
[2] Huawei Inc, Shenzhen 518129, Peoples R China
[3] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Feature extraction; Task analysis; Internet of Things; Image resolution; Deep learning; Pipelines; Cyclic convolutional neural network (CNN); image classification; multilocation contexts; multiscale contexts; NEURAL-NETWORKS;
D O I
10.1109/JIOT.2020.3038644
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Improving the capability of models at limited computational cost is an urgent demand in many vision-based Internet-of-Things applications. Recent progress on deep convolutional neural network (CNN) has largely accelerated the development of image classification. Although the hierarchical structure of CNN naturally helps to extract image features in different scales and locations progressively, conventional convolution can only handle contexts of one scale and on a limited area of a single location in a specific layer, limiting the utilization of multiscale and multilocation information. In this work, we present a cyclic CNN framework, which enables sufficient utilization of multiscale and multilocation contexts in a single layer of convolution. The cyclic CNN is an extremely simple but effective improvement upon conventional convolution, which occupies no additional parameter and negligible computation (even less than 0.1%). Moreover, cyclic CNN can be easily plugged into many existing CNN pipelines, e.g., the ResNet family, obtaining extremely low-cost performance gain upon them. Extensive experiments on both small-scale (CIFAR10 and CIFAR100) and large-scale (ILSVRC2012) image classification benchmarks demonstrate that a consistent performance promotion is obtained with the help of cyclic CNN.
引用
收藏
页码:7466 / 7475
页数:10
相关论文
共 51 条
[1]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[2]   A Vision of IoT: Applications, Challenges, and Opportunities With China Perspective [J].
Chen, Shanzhi ;
Xu, Hui ;
Liu, Dake ;
Hu, Bo ;
Wang, Hucheng .
IEEE INTERNET OF THINGS JOURNAL, 2014, 1 (04) :349-359
[3]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[4]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[5]  
DeVries T, 2017, ARXIV 170804552
[6]  
Florian L.C., 2017, arxiv preprint arxiv:1706.05587, DOI [DOI 10.48550/ARXIV.1706.05587, 10.48550/arXiv.1706.05587]
[7]   Artificial neural networks (the multilayer perceptron) - A review of applications in the atmospheric sciences [J].
Gardner, MW ;
Dorling, SR .
ATMOSPHERIC ENVIRONMENT, 1998, 32 (14-15) :2627-2636
[8]  
Gong YC, 2014, LECT NOTES COMPUT SC, V8695, P392, DOI 10.1007/978-3-319-10584-0_26
[9]  
He K, 2016, IEEE C COMP VIS PATT, DOI [10.1109/CVPR.2016.90, DOI 10.1109/CVPR.2016.90, 10.48550/arXiv.1512.03385, DOI 10.48550/ARXIV.1512.03385]
[10]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]