Hardy spaces on Lie groups of polynomial growth

被引:1
作者
ter Elst, A. F. M. [2 ]
Robinson, Derek W. [3 ]
Zhu YuePing [1 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226007, Peoples R China
[2] Univ Auckland, Dept Math, Auckland, New Zealand
[3] Inst Math Sci, Ctr Math & Applicat, Canberra, ACT 0200, Australia
基金
中国国家自然科学基金;
关键词
Lie groups; Hardy spaces; heat kernel; BMO SPACES; SUBELLIPTIC OPERATORS; LIPSCHITZ;
D O I
10.1007/s11425-010-0020-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give several characterizations of Hardy spaces associated with complex, second-order, subelliptic operators on Lie groups with polynomial growth.
引用
收藏
页码:23 / 40
页数:18
相关论文
共 18 条
[1]  
ALBERCHT D, 1996, P CTR MATH ITS APP 3, V34, P77
[2]  
[Anonymous], 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[3]  
[Anonymous], 2003, Progr. Math.
[4]   Hardy spaces and divergence operators on strongly Lipschitz domains of Rn [J].
Auscher, P ;
Russ, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (01) :148-184
[5]   SOME NEW FUNCTION-SPACES AND THEIR APPLICATIONS TO HARMONIC-ANALYSIS [J].
COIFMAN, RR ;
MEYER, Y ;
STEIN, EM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (02) :304-335
[6]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[7]   Duality of Hardy and BMO spaces associated with operators with heat kernel bounds [J].
Duong, XT ;
Yan, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (04) :943-973
[8]   Hardy spaces of spaces of homogeneous type [J].
Duong, XT ;
Yan, LX .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (10) :3181-3189
[9]  
Fefferman C, 1972, ACTA MATH-DJURSHOLM, V129, P137, DOI 10.1007/BF02392215
[10]   Hardy and BMO spaces associated to divergence form elliptic operators [J].
Hofmann, Steve ;
Mayboroda, Svitlana .
MATHEMATISCHE ANNALEN, 2009, 344 (01) :37-116